A276819 a(n) = (9*n^2 - n)/2 + 1.
1, 5, 18, 40, 71, 111, 160, 218, 285, 361, 446, 540, 643, 755, 876, 1006, 1145, 1293, 1450, 1616, 1791, 1975, 2168, 2370, 2581, 2801, 3030, 3268, 3515, 3771, 4036, 4310, 4593, 4885, 5186, 5496, 5815, 6143, 6480, 6826, 7181, 7545, 7918, 8300, 8691, 9091, 9500, 9918, 10345, 10781, 11226, 11680, 12143, 12615
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yuriy Sibirmovsky, Six diagonals of the triangular spiral.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[(9*n^2-n)/2+1, {n,0,100}]
-
PARI
Vec((1+2*x+6*x^2)/(1-x)^3 + O(x^60)) \\ Colin Barker, Sep 18 2016
-
PARI
a(n) = (9*n^2 - n)/2 + 1; \\ Altug Alkan, Sep 18 2016
Formula
a(n) = (9*n^2 - n)/2 + 1.
a(n) = a(n-1) + 9*n - 5 with a(0) = 1.
From Colin Barker, Sep 18 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: (1 + 2*x + 6*x^2)/(1 - x)^3. (End)
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A006137(n) - n.
E.g.f.: exp(x)*(2 + 8*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022
Comments