A276864 First differences of the Beatty sequence A001952 for 2 + sqrt(2).
3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Floor(n*(2 + Sqrt(2))) - Floor((n-1)*(2 + Sqrt(2))): n in [1..100]]; // G. C. Greubel, Aug 16 2018
-
Mathematica
z = 500; r = 2+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A001952 *) Differences[b] (* A276864 *)
-
PARI
a(n) = 2 + sqrtint(2*n^2) - sqrtint(2*(n-1)^2) \\ Andrew Howroyd, Feb 15 2018
Formula
a(n) = floor(n*r) - floor(n*r - r), where r = 2 + sqrt(2), n >= 1.
a(n) = 2 + floor(n*sqrt(2)) - floor((n-1)*sqrt(2)). - Andrew Howroyd, Feb 15 2018
Extensions
Name corrected by Michel Dekking, Aug 25 2019
Comments