A276921 Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, ... 0, 2, 3, 3, 3, 3, 3, 3, ... 0, 6, 12, 13, 13, 13, 13, 13, ... 0, 24, 66, 74, 75, 75, 75, 75, ... 0, 120, 450, 530, 540, 541, 541, 541, ... 0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ... 0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( A(n-i, k)*binomial(n, i), i=1..min(n, k))) end: seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
Formula
E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
A(n,k) = Sum_{j=0..k} A276922(n,j).