A080599
Expansion of e.g.f.: 2/(2-2*x-x^2).
Original entry on oeis.org
1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0
Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003
From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
{} {{1}} {{1,2}} {{1},{2,3}}
{{1},{2}} {{1,2},{3}}
{{2},{1}} {{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 10.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos Martínez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Laura Gellert and Raman Sanyal, On degree sequences of undirected, directed, and bidirected graphs, arXiv preprint arXiv:1512.08448 [math.CO], 2015.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- Dixy Msapato, Counting the number of tau-exceptional sequences over Nakayama algebras, arXiv:2002.12194 [math.RT], 2020.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
- Index entries for related partition-counting sequences
(1,1)-avoiding patterns are
A000142.
(1,1,1)-avoiding compositions are
A232432.
(1,1,1)-matching patterns are
A335508.
(1,1,1)-avoiding permutations of prime indices are
A335511.
(1,1,1)-avoiding compositions are ranked by
A335513.
(1,1,1,1)-avoiding patterns are
A189886.
-
[n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
-
a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
seq(a(n), n=0..40); # Alois P. Heinz, Jun 01 2009
a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
-
Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
-
A002605=BinaryRecurrenceSequence(2,2,0,1)
def A080599(n): return factorial(n)*A002605(n+1)/2^n
[A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A276922
Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 42, 8, 1, 0, 120, 330, 80, 10, 1, 0, 720, 2970, 860, 120, 12, 1, 0, 5040, 30240, 10290, 1540, 168, 14, 1, 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1, 0, 362880, 4377240, 1977360, 326970, 38808, 3696, 288, 18, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 6, 6, 1;
0, 24, 42, 8, 1;
0, 120, 330, 80, 10, 1;
0, 720, 2970, 860, 120, 12, 1;
0, 5040, 30240, 10290, 1540, 168, 14, 1;
0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1;
...
Columns k=0-10 give:
A000007,
A000142 (for n>0),
A320758,
A320759,
A320760,
A320761,
A320762,
A320763,
A320764,
A320765,
A320766.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)
A189886
a(n) is the number of compositions of the set {1, 2, ..., n} into blocks, each of size 1, 2 or 3 (n >= 0).
Original entry on oeis.org
1, 1, 3, 13, 74, 530, 4550, 45570, 521640, 6717480, 96117000, 1512819000, 25975395600, 483169486800, 9678799930800, 207733600074000, 4755768505488000, 115681418156304000, 2979408725813520000, 80998627977002736000, 2317937034142810080000, 69649003197501567840000, 2192459412316607834400000, 72152830779716793506400000, 2477756318984329979756160000
Offset: 0
a(3) = 13 because all compositions of set {a,b,c} into blocks of size 1, 2, or 3 are:
1: ({a,b,c}),
2: ({a},{b,c}),
3: ({b,c},{a}),
4: ({b},{a,c}),
5: ({a,c},{b}),
6: ({c},{a,b}),
7: ({a,b},{c}),
8: ({a},{b},{c}),
9: ({a},{c},{b}),
10: ({b},{a},{c}),
11: ({b},{c},{a}),
12: ({c},{a},{b}),
13: ({c},{b},{a}).
- Alois P. Heinz, Table of n, a(n) for n = 0..424
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
- Adi Dani, Compositions and partitions of sets
-
A189886 := proc(n) local m, j; add(add(2^(2*m-n-j)*3^(j-m)*n!
*binomial(m,j)*binomial(j,2*j-(3*m-n)),j=0..3*m-n),m=0..n) end:
seq(A189886(n),n=0..24); # Peter Luschny, May 02 2011
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 3)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 22 2016
# third Maple program:
a:= n-> n! * (<<0|1|0>, <0|0|1>, <1/6|1/2|1>>^n)[3, 3]:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 22 2016
-
Table[Sum[n!/(2^(n+j-2m)3^(m-j))*Binomial[m,j]*Binomial[j,n+2j-3m], {m,0,n},{j,0,3m-n}],{n,0,15}]
-
a(n)=sum(m=0,n, sum(j=0,3*m-n, n!/(2^(n+j-2*m) *3^(m-j)) *binomial(m,j) *binomial(j,n+2*j-3*m))); /* Joerg Arndt, May 03 2011 */
A276924
Number of ordered set partitions of [n] with at most four elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 540, 4670, 47110, 543130, 7044450, 101519250, 1609319250, 27830729850, 521397676800, 10519576867800, 227400111939000, 5243385642495000, 128458209887007000, 3332234177825553000, 91241046790816923000, 2629791992312269785000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 4)))
end:
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n!*(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1/24|1/6|1/2|1>>^n)[4, 4]:
seq(a(n), n=0..25);
-
max = 20; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 4}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276925
Number of ordered set partitions of [n] with at most five elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4682, 47278, 545594, 7083258, 102177222, 1621316466, 28065324210, 526301293518, 10628781887724, 229983021824556, 5308071700475544, 130168746864660504, 3379871981604782664, 92634950510491052664, 2672550322299614660904
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 5)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 5}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276926
Number of ordered set partitions of [n] with at most six elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47292, 545818, 7086954, 102241902, 1622523210, 28089336198, 526810157874, 10640241569958, 230256584914356, 5314976561846952, 130352566702702344, 3385021286975255928, 92786398312428612792, 2677217312112863784264
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 6)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 6}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276927
Number of ordered set partitions of [n] with at most seven elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47293, 545834, 7087242, 102247182, 1622624850, 28091404902, 526854753282, 10641259374174, 230281144233426, 5315601950221992, 130369339178641992, 3385494089758915992, 92800379366660198376, 2677650178353887869704
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 7)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 7}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276928
Number of ordered set partitions of [n] with at most eight elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087260, 102247542, 1622632110, 28091557362, 526858114926, 10641337416138, 230283052622766, 5315651069181882, 130370668142722722, 3385531828379161890, 92801502294634265418, 2677685131818279016434
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 8)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 8}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276929
Number of ordered set partitions of [n] with at most nine elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247562, 1622632550, 28091567042, 526858335146, 10641342645362, 230283182692706, 5315654461874042, 130370760923004602, 3385534486308684710, 92801581965119911026, 2677687627216659136794
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 9)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 9}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
A276930
Number of ordered set partitions of [n] with at most ten elements per block.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632572, 28091567570, 526858347730, 10641342953670, 230283190536542, 5315654669985946, 130370766690581274, 3385534653313192094, 92801587015186096762, 2677687786557636155446
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i), i=1..min(n, 10)))
end:
seq(a(n), n=0..25);
-
max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 10}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)
Showing 1-10 of 10 results.
Comments