cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A080599 Expansion of e.g.f.: 2/(2-2*x-x^2).

Original entry on oeis.org

1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0

Views

Author

Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003

Keywords

Comments

Number of ordered partitions of {1,..,n} with at most 2 elements per block. - Bob Proctor, Apr 18 2005
In other words, number of preferential arrangements of n things (see A000670) in which each clump has size 1 or 2. - N. J. A. Sloane, Apr 13 2014
Recurrences (of the hypergeometric type of the Jovovic formula) mean: multiplying the sequence vector from the left with the associated matrix of the recurrence coefficients (here: an infinite lower triangular matrix with the natural numbers in the main diagonal and the triangular series in the subdiagonal) recovers the sequence up to an index shift. In that sense, this sequence here and many other sequences of the OEIS are eigensequences. - Gary W. Adamson, Feb 14 2011
Number of intervals in the weak (Bruhat) order of S_n that are Boolean algebras. - Richard Stanley, May 09 2011
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A000085, A005442 and A052585. - Peter Bala, Dec 07 2011
From Gus Wiseman, Jul 04 2020: (Start)
Also the number of (1,1,1)-avoiding or cubefree sequences of length n covering an initial interval of positive integers. For example, the a(0) = 1 through a(3) = 12 sequences are:
() (1) (11) (112)
(12) (121)
(21) (122)
(123)
(132)
(211)
(212)
(213)
(221)
(231)
(312)
(321)
(End)

Examples

			From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}
             {{1},{2}}  {{1,2},{3}}
             {{2},{1}}  {{1,3},{2}}
                        {{2},{1,3}}
                        {{2,3},{1}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1},{3},{2}}
                        {{2},{1},{3}}
                        {{2},{3},{1}}
                        {{3},{1},{2}}
                        {{3},{2},{1}}
(End)
		

Crossrefs

Column k=2 of A276921.
Cubefree numbers are A004709.
(1,1)-avoiding patterns are A000142.
(1,1,1)-avoiding compositions are A232432.
(1,1,1)-matching patterns are A335508.
(1,1,1)-avoiding permutations of prime indices are A335511.
(1,1,1)-avoiding compositions are ranked by A335513.
(1,1,1,1)-avoiding patterns are A189886.

Programs

  • Magma
    [n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
    
  • Maple
    a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 01 2009
    a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
  • Mathematica
    Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
  • PARI
    Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
    
  • SageMath
    A002605=BinaryRecurrenceSequence(2,2,0,1)
    def A080599(n): return factorial(n)*A002605(n+1)/2^n
    [A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023

Formula

a(n) = n*a(n-1) + (n*(n-1)/2)*a(n-2). - Vladeta Jovovic, Aug 22 2003
E.g.f.: 1/(1-x-x^2/2). - Richard Stanley, May 09 2011
a(n) ~ n!*((1+sqrt(3))/2)^(n+1)/sqrt(3). - Vaclav Kotesovec, Oct 13 2012
a(n) = n!*((1+sqrt(3))^(n+1) - (1-sqrt(3))^(n+1))/(2^(n+1)*sqrt(3)). - Vladimir Reshetnikov, Oct 31 2015
a(n) = A090932(n) * A002530(n+1). - Robert Israel, Nov 01 2015

A276922 Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 42, 8, 1, 0, 120, 330, 80, 10, 1, 0, 720, 2970, 860, 120, 12, 1, 0, 5040, 30240, 10290, 1540, 168, 14, 1, 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1, 0, 362880, 4377240, 1977360, 326970, 38808, 3696, 288, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,      1;
  0,     6,      6,      1;
  0,    24,     42,      8,     1;
  0,   120,    330,     80,    10,    1;
  0,   720,   2970,    860,   120,   12,   1;
  0,  5040,  30240,  10290,  1540,  168,  14,  1;
  0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A320758, A320759, A320760, A320761, A320762, A320763, A320764, A320765, A320766.
Row sums give A000670.
T(2n,n) gives A276923.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] :=  A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)

Formula

E.g.f. for column k>0: 1/(1-Sum_{i=1..k} x^i/i!) - 1/(1-Sum_{i=1..k-1} x^i/i!).
T(n,k) = A276921(n,k) - A276921(n,k-1) for k>0. T(n,0) = A000007(0).

A189886 a(n) is the number of compositions of the set {1, 2, ..., n} into blocks, each of size 1, 2 or 3 (n >= 0).

Original entry on oeis.org

1, 1, 3, 13, 74, 530, 4550, 45570, 521640, 6717480, 96117000, 1512819000, 25975395600, 483169486800, 9678799930800, 207733600074000, 4755768505488000, 115681418156304000, 2979408725813520000, 80998627977002736000, 2317937034142810080000, 69649003197501567840000, 2192459412316607834400000, 72152830779716793506400000, 2477756318984329979756160000
Offset: 0

Views

Author

Adi Dani, Apr 29 2011

Keywords

Comments

Sequences of sets, each set having no more than 3 elements.

Examples

			a(3) = 13 because all compositions of set {a,b,c} into blocks of size 1, 2, or 3 are:
1: ({a,b,c}),
2: ({a},{b,c}),
3: ({b,c},{a}),
4: ({b},{a,c}),
5: ({a,c},{b}),
6: ({c},{a,b}),
7: ({a,b},{c}),
8: ({a},{b},{c}),
9: ({a},{c},{b}),
10: ({b},{a},{c}),
11: ({b},{c},{a}),
12: ({c},{a},{b}),
13: ({c},{b},{a}).
		

Crossrefs

Column k=3 of A276921.

Programs

  • Maple
    A189886 := proc(n) local m, j; add(add(2^(2*m-n-j)*3^(j-m)*n!
    *binomial(m,j)*binomial(j,2*j-(3*m-n)),j=0..3*m-n),m=0..n) end:
    seq(A189886(n),n=0..24); # Peter Luschny, May 02 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 3)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 22 2016
    # third Maple program:
    a:= n-> n! * (<<0|1|0>, <0|0|1>, <1/6|1/2|1>>^n)[3, 3]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    Table[Sum[n!/(2^(n+j-2m)3^(m-j))*Binomial[m,j]*Binomial[j,n+2j-3m], {m,0,n},{j,0,3m-n}],{n,0,15}]
  • PARI
    a(n)=sum(m=0,n, sum(j=0,3*m-n, n!/(2^(n+j-2*m) *3^(m-j)) *binomial(m,j) *binomial(j,n+2*j-3*m))); /* Joerg Arndt, May 03 2011 */

Formula

a(n) = sum(m=0..n, sum(j=0..3*m-n, n!/(2^(n+j-2*m) * 3^(m-j)) * C(m,j) * C(j,n+2*j-3*m))) where C(n,k) is the binomial coefficient.
a(n) = n * a(n-1) + n*(n-1)/2 * a(n-2) + n*(n-1)*(n-2)/6 * a(n-3). - Istvan Mezo, Jun 06 2013
E.g.f.: 1/(1 - x - x^2/2 - x^3/6). - Geoffrey Critzer, Dec 04 2012

A276924 Number of ordered set partitions of [n] with at most four elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 540, 4670, 47110, 543130, 7044450, 101519250, 1609319250, 27830729850, 521397676800, 10519576867800, 227400111939000, 5243385642495000, 128458209887007000, 3332234177825553000, 91241046790816923000, 2629791992312269785000
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=4 of A276921.
Cf. A001681.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 4)))
        end:
    seq(a(n), n=0..25);
    # second Maple program:
    a:= n-> n!*(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1/24|1/6|1/2|1>>^n)[4, 4]:
    seq(a(n), n=0..25);
  • Mathematica
    max = 20; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 4}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..4} x^i/i!).

A276925 Number of ordered set partitions of [n] with at most five elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4682, 47278, 545594, 7083258, 102177222, 1621316466, 28065324210, 526301293518, 10628781887724, 229983021824556, 5308071700475544, 130168746864660504, 3379871981604782664, 92634950510491052664, 2672550322299614660904
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=5 of A276921.
Cf. A110038.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 5)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 5}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..5} x^i/i!).

A276926 Number of ordered set partitions of [n] with at most six elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47292, 545818, 7086954, 102241902, 1622523210, 28089336198, 526810157874, 10640241569958, 230256584914356, 5314976561846952, 130352566702702344, 3385021286975255928, 92786398312428612792, 2677217312112863784264
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=6 of A276921.
Cf. A148092.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 6)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 6}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..6} x^i/i!).

A276927 Number of ordered set partitions of [n] with at most seven elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545834, 7087242, 102247182, 1622624850, 28091404902, 526854753282, 10641259374174, 230281144233426, 5315601950221992, 130369339178641992, 3385494089758915992, 92800379366660198376, 2677650178353887869704
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=7 of A276921.
Cf. A229224.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 7)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 7}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..7} x^i/i!).

A276928 Number of ordered set partitions of [n] with at most eight elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087260, 102247542, 1622632110, 28091557362, 526858114926, 10641337416138, 230283052622766, 5315651069181882, 130370668142722722, 3385531828379161890, 92801502294634265418, 2677685131818279016434
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=8 of A276921.
Cf. A229225.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 8)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 8}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..8} x^i/i!).

A276929 Number of ordered set partitions of [n] with at most nine elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247562, 1622632550, 28091567042, 526858335146, 10641342645362, 230283182692706, 5315654461874042, 130370760923004602, 3385534486308684710, 92801581965119911026, 2677687627216659136794
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=9 of A276921.
Cf. A229226.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 9)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 9}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..9} x^i/i!).

A276930 Number of ordered set partitions of [n] with at most ten elements per block.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632572, 28091567570, 526858347730, 10641342953670, 230283190536542, 5315654669985946, 130370766690581274, 3385534653313192094, 92801587015186096762, 2677687786557636155446
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Crossrefs

Column k=10 of A276921.
Cf. A229227.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n, i), i=1..min(n, 10)))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    max = 25; CoefficientList[1/(1-Sum[x^i/i!, {i, 1, 10}]) + O[x]^(max+1), x]* Range[0, max]! (* Jean-François Alcover, May 24 2018 *)

Formula

E.g.f.: 1/(1-Sum_{i=1..10} x^i/i!).
Showing 1-10 of 10 results.