cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276921 Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,     1,     1,     1,     1,     1, ...
  0,    1,     1,     1,     1,     1,     1,     1, ...
  0,    2,     3,     3,     3,     3,     3,     3, ...
  0,    6,    12,    13,    13,    13,    13,    13, ...
  0,   24,    66,    74,    75,    75,    75,    75, ...
  0,  120,   450,   530,   540,   541,   541,   541, ...
  0,  720,  3690,  4550,  4670,  4682,  4683,  4683, ...
  0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
		

Crossrefs

Main diagonal gives A000670.
Cf. A276922.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
A(n,k) = Sum_{j=0..k} A276922(n,j).

A229226 The partition function G(n,9).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678558, 4213452, 27642837, 190882290, 1382779413, 10478259030, 82844940414, 681863474058, 5830425411936, 51698581146426, 474582397380708, 4503425395487976, 44113612993755306, 445502134752984696
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,9) of set partitions of {1,...,n} into sets of size at most 9.

Crossrefs

Column k=9 of A229223.
Cf. A276929.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 9):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 9)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 9}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..9} x^j/j!).

A320765 Number of ordered set partitions of [n] where the maximal block size equals nine.

Original entry on oeis.org

1, 20, 440, 9680, 220220, 5229224, 130069940, 3392692160, 92780281880, 2657929522820, 79670485645608, 2495398380120360, 81558207395885220, 2777643033619233780, 98440545801322467600, 3625667341827832048176, 138601954935720474004950, 5492809832014657114548300
Offset: 9

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=9 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(9):
    seq(a(n), n=9..25);

Formula

E.g.f.: 1/(1-Sum_{i=1..9} x^i/i!) - 1/(1-Sum_{i=1..8} x^i/i!).
a(n) = A276929(n) - A276928(n).

A320766 Number of ordered set partitions of [n] where the maximal block size equals ten.

Original entry on oeis.org

1, 22, 528, 12584, 308308, 7843836, 208111904, 5767576672, 167004507384, 5050066185736, 159340977018652, 5240336900883084, 179428070995076904, 6388579669849124748, 236257342145458744968, 9064169856705631376280, 360365153529146965326270
Offset: 10

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=10 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(10):
    seq(a(n), n=10..30);

Formula

E.g.f.: 1/(1-Sum_{i=1..10} x^i/i!) - 1/(1-Sum_{i=1..9} x^i/i!).
a(n) = A276930(n) - A276929(n).
Showing 1-4 of 4 results.