A001680
The partition function G(n,3).
Original entry on oeis.org
1, 1, 2, 5, 14, 46, 166, 652, 2780, 12644, 61136, 312676, 1680592, 9467680, 55704104, 341185496, 2170853456, 14314313872, 97620050080, 687418278544, 4989946902176, 37286121988256, 286432845428192, 2259405263572480, 18280749571449664, 151561941235370176
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..653 (terms 0..250 from Alois P. Heinz)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Filippo Disanto and Thomas Wiehe, Some instances of a sub-permutation problem on pattern avoiding permutations, arXiv preprint arXiv:1210.6908 [math.CO], 2012.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 18
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1.
- F. L. Miksa, L. Moser and M. Wyman, Restricted partitions of finite sets, Canad. Math. Bull., 1 (1958), 87-96.
-
G:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0,
add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
a:= n-> G(n, 3):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 20 2012
# Recurrence:
rec := {(-n^2-3*n-2)*f(n)+(-2*n-4)*f(n+1)-2*f(n+2)+2*f(n+3)=0,f(0)=1,f(1)=1,f(2)=2}:
aList := gfun:-rectoproc(rec,f(n),list): aList(25); # Peter Luschny, Feb 26 2018
-
Table[Sum[n!/(m!2^(n+j-2m)3^(m-j))Binomial[m,j]Binomial[j,n+2j-3m],{m,0,n},{j,0,3m-n}],{n,0,15}]
More terms added May 13 2009
A080599
Expansion of e.g.f.: 2/(2-2*x-x^2).
Original entry on oeis.org
1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 64751400, 972972000, 15949256400, 283232149200, 5416632421200, 110988861984000, 2425817682288000, 56333385828720000, 1385151050307024000, 35950878932544576000, 982196278209226080000, 28175806418228108640000
Offset: 0
Detlef Pauly (dettodet(AT)yahoo.de), Feb 24 2003
From _Gus Wiseman_, Jul 04 2020: (Start)
The a(0) = 1 through a(3) = 12 ordered set partitions with block sizes <= 2 are:
{} {{1}} {{1,2}} {{1},{2,3}}
{{1},{2}} {{1,2},{3}}
{{2},{1}} {{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 10.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos Martínez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Laura Gellert and Raman Sanyal, On degree sequences of undirected, directed, and bidirected graphs, arXiv preprint arXiv:1512.08448 [math.CO], 2015.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- Dixy Msapato, Counting the number of tau-exceptional sequences over Nakayama algebras, arXiv:2002.12194 [math.RT], 2020.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
- Index entries for related partition-counting sequences
(1,1)-avoiding patterns are
A000142.
(1,1,1)-avoiding compositions are
A232432.
(1,1,1)-matching patterns are
A335508.
(1,1,1)-avoiding permutations of prime indices are
A335511.
(1,1,1)-avoiding compositions are ranked by
A335513.
(1,1,1,1)-avoiding patterns are
A189886.
-
[n le 2 select 1 else (n-1)*Self(n-1) + Binomial(n-1,2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jan 31 2023
-
a:= n-> n! *(Matrix([[1,1], [1/2,0]])^n)[1,1]:
seq(a(n), n=0..40); # Alois P. Heinz, Jun 01 2009
a:= gfun:-rectoproc({a(n) = n*a(n-1)+(n*(n-1)/2)*a(n-2),a(0)=1,a(1)=1},a(n),remember):
seq(a(n), n=0..40); # Robert Israel, Nov 01 2015
-
Table[n!*SeriesCoefficient[-2/(-2+2*x+x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
Round@Table[n! ((1+Sqrt[3])^(n+1) - (1-Sqrt[3])^(n+1))/(2^(n+1) Sqrt[3]), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 31 2015 *)
-
Vec(serlaplace((2/(2-2*x-x^2) + O(x^30)))) \\ Michel Marcus, Nov 02 2015
-
A002605=BinaryRecurrenceSequence(2,2,0,1)
def A080599(n): return factorial(n)*A002605(n+1)/2^n
[A080599(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A276921
Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 12, 13, 13, 13, 13, 13, ...
0, 24, 66, 74, 75, 75, 75, 75, ...
0, 120, 450, 530, 540, 541, 541, 541, ...
0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ...
0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
Columns k=0..10 give:
A000007,
A000142,
A080599,
A189886,
A276924,
A276925,
A276926,
A276927,
A276928,
A276929,
A276930.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
A364324
a(n) = n!*tribonacci(n+2).
Original entry on oeis.org
1, 1, 4, 24, 168, 1560, 17280, 221760, 3265920, 54069120, 994291200, 20118067200, 444034483200, 10617070464000, 273391121203200, 7542665754624000, 221969877921792000, 6940528784437248000, 229781192298577920000, 8030036368187817984000, 295390797322766745600000
Offset: 0
a(5) = 1560 since the number of ways to partition [5] into blocks of size at most 3, order the blocks, and order the elements within each block are the following:
1) 1,2,3,4,5: 120 ordered blocks; 120 ways;
2) 12,3,4,5: 240 ordered blocks; 480 ways;
3) 12,34,5: 90 ordered blocks; 360 ways;
4) 123,45: 20 ordered blocks; 240 ways;
5) 123,4,5: 60 ordered blocks; 360 ways.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i)*i!, i=1..min(n, 3)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 18 2023
-
With[{m = 21}, Range[0, m - 1]! * LinearRecurrence[{1, 1, 1}, {1, 1, 2}, m]] (* Amiram Eldar, Jul 28 2023 *)
A320759
Number of ordered set partitions of [n] where the maximal block size equals three.
Original entry on oeis.org
1, 8, 80, 860, 10290, 136080, 1977360, 31365600, 539847000, 10026139200, 199937337600, 4262167509600, 96744738090000, 2329950823200000, 59348032327584000, 1594257675506496000, 45047749044458160000, 1335740755933584000000, 41473196779273459200000
Offset: 3
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(3):
seq(a(n), n=3..25);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 3}, b[n, k] - b[n, k-1]];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A320760
Number of ordered set partitions of [n] where the maximal block size equals four.
Original entry on oeis.org
1, 10, 120, 1540, 21490, 326970, 5402250, 96500250, 1855334250, 38228190000, 840776937000, 19666511865000, 487617137007000, 12776791730703000, 352825452012033000, 10242418813814187000, 311854958169459705000, 9937942309809373860000, 330821844137019184950000
Offset: 4
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(4):
seq(a(n), n=4..25);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 4}, b[n, k] - b[n, k-1]];
a /@ Range[4, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A355293
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3).
Original entry on oeis.org
1, 1, 3, 14, 82, 610, 5450, 56700, 674520, 9027480, 134236200, 2195701200, 39180094800, 757389032400, 15767305554000, 351689317980000, 8367381470448000, 211518767796336000, 5661504152255952000, 159954273475764768000, 4757034049019572320000, 148547713504322452320000, 4859583724723970642400000
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x - x^2/2 - x^3/3), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n - 1] + n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3; Table[a[n], {n, 0, 22}]
A366942
Expansion of e.g.f. 1/(1-x-2*x^2-3*x^3).
Original entry on oeis.org
1, 1, 6, 48, 408, 5040, 72000, 1184400, 22619520, 482993280, 11459750400, 299495750400, 8531976499200, 263353163673600, 8754879893760000, 311808414677760000, 11845876873678848000, 478163414336864256000, 20436460099541950464000, 921972301728418676736000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*j!*j, j=1..min(3, n)))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Dec 14 2023
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[1/(1 - x - 2*x^2 - 3*x^3), {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x-2*x^2-3*x^3))) \\ Michel Marcus, Oct 30 2023
A366950
Expansion of e.g.f. exp(x^2+3*x^3).
Original entry on oeis.org
1, 0, 2, 18, 12, 360, 3360, 7560, 183120, 1814400, 8195040, 184615200, 1976546880, 14166472320, 310589959680, 3634245014400, 36092331475200, 787170153369600, 10123771065408000, 127736406404006400, 2807613032557132800, 39732753299855616000
Offset: 0
a(6)=3360 since the number of ways to partition [6] into unordered blocks of size at most 3, order the elements within each block, and select 2 elements from each block are the following:
1) 12,34,56: 120 ways to order elements in unordered blocks, 1 way to choose 2 elements from each block, hence 120 ways;
2) 123,456: 360 ways to order elements in unordered blocks, 3*3 ways to choose 2 elements from each block, hence 3240 ways.
-
With[{m = 21}, Range[0, m]! * CoefficientList[Series[Exp[x^2 + 3*x^3], {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
A365330
Expansion of e.g.f. x^3/(1-x-x^2-x^3)^2.
Original entry on oeis.org
0, 0, 0, 6, 48, 600, 8640, 131040, 2257920, 42819840, 885427200, 19918483200, 483791616000, 12622171161600, 352200296448000, 10466625641472000, 330077933273088000, 11010660024139776000, 387369218691366912000, 14335266857678807040000, 556691771706962411520000
Offset: 0
a(6)=8640 since the ways to partition [6] into blocks of size at most 3, order the blocks, order the elements within each block, and select 3 elements from a block are the following:
(i) 123,4,5,6: 2880 such orderings, 1 way to choose three elements (from the block with 3 elements), hence 2880 ways;
(ii) 123,45,6: 4320 such orderings, 1 way to choose three elements (from the block with 3 elements), hence 4320 ways;
(iii) 123,456: 720 such orderings, 2 ways to choose three elements (from one of the two blocks with 3 elements), hence 1440 ways.
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[x^3/(1 - x - x^2 - x^3)^2, {x, 0, m}], x]] (* Amiram Eldar, Sep 02 2023 *)
Showing 1-10 of 11 results.
Comments