cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276921 Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,     1,     1,     1,     1,     1, ...
  0,    1,     1,     1,     1,     1,     1,     1, ...
  0,    2,     3,     3,     3,     3,     3,     3, ...
  0,    6,    12,    13,    13,    13,    13,    13, ...
  0,   24,    66,    74,    75,    75,    75,    75, ...
  0,  120,   450,   530,   540,   541,   541,   541, ...
  0,  720,  3690,  4550,  4670,  4682,  4683,  4683, ...
  0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
		

Crossrefs

Main diagonal gives A000670.
Cf. A276922.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
A(n,k) = Sum_{j=0..k} A276922(n,j).

A110038 The partition function G(n,5).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 869, 4075, 20645, 112124, 648649, 3976633, 25719630, 174839120, 1245131903, 9263053753, 71806323461, 578719497070, 4839515883625, 41916097982471, 375401824277096, 3471395994487422, 33099042344383885, 325005134436155395
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Set partitions into sets of size at most 5. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]

Crossrefs

The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.
Column k=5 of A229223.
Cf. A276925.

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 5):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 20 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [1, 1, 2, 5, 15][n+1],
          a(n-1)+(n-1)*(a(n-2)+(n-2)/2*(a(n-3)+(n-3)/3*(a(n-4)
          +(n-4)/4*a(n-5)))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 ).
a(n) = n! * sum(k=1..n, 1/k! * sum(r=0..k, C(k,r) * sum(m=0..r, 2^(m-r) * C(r,m) * sum(j=0..m, C(m,j) * C(j,n-m-k-j-r) * 6^(j-m) * 24^(n-r-m-k-2*j) * 120^(m+k+j+r-n))))). - Vladimir Kruchinin, Jan 25 2011
a(n) = G(n,5) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012

A320761 Number of ordered set partitions of [n] where the maximal block size equals five.

Original entry on oeis.org

1, 12, 168, 2464, 38808, 657972, 11997216, 234594360, 4903616718, 109205019924, 2582909885556, 64686057980544, 1710536977653504, 47637803779229664, 1393903719674129664, 42758329987344875904, 1372254504736418142840, 45989719374155059863360
Offset: 5

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=5 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(5):
    seq(a(n), n=5..25);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
    a[n_] := With[{k = 5}, b[n, k] - b[n, k-1]];
    a /@ Range[5, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

E.g.f.: 1/(1-Sum_{i=1..5} x^i/i!) - 1/(1-Sum_{i=1..4} x^i/i!).
a(n) = A276925(n) - A276924(n).

A320762 Number of ordered set partitions of [n] where the maximal block size equals six.

Original entry on oeis.org

1, 14, 224, 3696, 64680, 1206744, 24011988, 508864356, 11459682234, 273563089800, 6904861371408, 183819838041840, 5149305370473264, 151447801937560128, 4666989813249123360, 150394712706368466336, 5059062167993588722968, 177346570951333803395376
Offset: 6

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=6 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(6):
    seq(a(n), n=6..25);

Formula

E.g.f.: 1/(1-Sum_{i=1..6} x^i/i!) - 1/(1-Sum_{i=1..5} x^i/i!).
a(n) = A276926(n) - A276925(n).
Showing 1-4 of 4 results.