A276921
Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 3, 3, 3, 3, 3, ...
0, 6, 12, 13, 13, 13, 13, 13, ...
0, 24, 66, 74, 75, 75, 75, 75, ...
0, 120, 450, 530, 540, 541, 541, 541, ...
0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ...
0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
Columns k=0..10 give:
A000007,
A000142,
A080599,
A189886,
A276924,
A276925,
A276926,
A276927,
A276928,
A276929,
A276930.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
A110038
The partition function G(n,5).
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 202, 869, 4075, 20645, 112124, 648649, 3976633, 25719630, 174839120, 1245131903, 9263053753, 71806323461, 578719497070, 4839515883625, 41916097982471, 375401824277096, 3471395994487422, 33099042344383885, 325005134436155395
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..591 (terms 0..200 from Alois P. Heinz)
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- F. L. Miksa, L. Moser and M. Wyman, Restricted partitions of finite sets, Canad. Math. Bull., 1 (1958), 87-96.
The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by
A000012,
A000085,
A001680,
A001681,
A110038,
A148092 respectively.
-
G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
a:= n-> G(n, 5):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 20 2012
# second Maple program:
a:= proc(n) option remember; `if`(n<5, [1, 1, 2, 5, 15][n+1],
a(n-1)+(n-1)*(a(n-2)+(n-2)/2*(a(n-3)+(n-3)/3*(a(n-4)
+(n-4)/4*a(n-5)))))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 15 2013
-
G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
A320761
Number of ordered set partitions of [n] where the maximal block size equals five.
Original entry on oeis.org
1, 12, 168, 2464, 38808, 657972, 11997216, 234594360, 4903616718, 109205019924, 2582909885556, 64686057980544, 1710536977653504, 47637803779229664, 1393903719674129664, 42758329987344875904, 1372254504736418142840, 45989719374155059863360
Offset: 5
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(5):
seq(a(n), n=5..25);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 5}, b[n, k] - b[n, k-1]];
a /@ Range[5, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A320762
Number of ordered set partitions of [n] where the maximal block size equals six.
Original entry on oeis.org
1, 14, 224, 3696, 64680, 1206744, 24011988, 508864356, 11459682234, 273563089800, 6904861371408, 183819838041840, 5149305370473264, 151447801937560128, 4666989813249123360, 150394712706368466336, 5059062167993588722968, 177346570951333803395376
Offset: 6
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(6):
seq(a(n), n=6..25);
Showing 1-4 of 4 results.
Comments