cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276921 Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 12, 24, 0, 1, 1, 3, 13, 66, 120, 0, 1, 1, 3, 13, 74, 450, 720, 0, 1, 1, 3, 13, 75, 530, 3690, 5040, 0, 1, 1, 3, 13, 75, 540, 4550, 35280, 40320, 0, 1, 1, 3, 13, 75, 541, 4670, 45570, 385560, 362880, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,     1,     1,     1,     1,     1,     1, ...
  0,    1,     1,     1,     1,     1,     1,     1, ...
  0,    2,     3,     3,     3,     3,     3,     3, ...
  0,    6,    12,    13,    13,    13,    13,    13, ...
  0,   24,    66,    74,    75,    75,    75,    75, ...
  0,  120,   450,   530,   540,   541,   541,   541, ...
  0,  720,  3690,  4550,  4670,  4682,  4683,  4683, ...
  0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
		

Crossrefs

Main diagonal gives A000670.
Cf. A276922.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 03 2017, translated from Maple *)

Formula

E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
A(n,k) = Sum_{j=0..k} A276922(n,j).

A229224 The partition function G(n,7).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21137, 115874, 677623, 4204927, 27565188, 190168577, 1376119903, 10414950785, 82230347149, 675762947626, 5768465148493, 51054457464731, 467728049807348, 4428770289719931, 43281554035140829, 436015324638219779
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,7) of set partitions of {1,...,n} into sets of size at most 7.

Crossrefs

Column k=7 of A229223.
Cf. A276927.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 7):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 7)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 7}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..7} x^j/j!).

A320763 Number of ordered set partitions of [n] where the maximal block size equals seven.

Original entry on oeis.org

1, 16, 288, 5280, 101640, 2068704, 44595408, 1017804216, 24559319070, 625388375040, 16772475939648, 472802783660064, 13981054231585584, 432866241024085440, 14006847775868101440, 472893544571144089536, 16631451859811919417144, 608402197372214335559040
Offset: 7

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=7 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(7):
    seq(a(n), n=7..25);

Formula

E.g.f.: 1/(1-Sum_{i=1..7} x^i/i!) - 1/(1-Sum_{i=1..6} x^i/i!).
a(n) = A276927(n) - A276926(n).

A320764 Number of ordered set partitions of [n] where the maximal block size equals eight.

Original entry on oeis.org

1, 18, 360, 7260, 152460, 3361644, 78041964, 1908389340, 49118959890, 1328964080730, 37738620245898, 1122927974067042, 34953464391146730, 1136306352798186570, 38520124906043253330, 1359621561034260858906, 49896547074800880656202, 1901350452285623246965200
Offset: 8

Views

Author

Alois P. Heinz, Oct 20 2018

Keywords

Crossrefs

Column k=8 of A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(8):
    seq(a(n), n=8..25);

Formula

E.g.f.: 1/(1-Sum_{i=1..8} x^i/i!) - 1/(1-Sum_{i=1..7} x^i/i!).
a(n) = A276928(n) - A276927(n).
Showing 1-4 of 4 results.