cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276965 Square row sums of the triangle of Lah numbers (A105278).

Original entry on oeis.org

1, 1, 5, 73, 2017, 86801, 5289301, 430814665, 45052534913, 5868875082817, 930114039075301, 175964489469769001, 39125942325820605025, 10092849114680961297553, 2987365449592984040715317, 1005030253302269078318250601
Offset: 0

Views

Author

Emanuele Munarini, Sep 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{1-n,1-n,-n,-n},{1},1],{n,0,100}]
  • Maxima
    makelist(hypergeometric([-n+1,-n+1,-n,-n],[1],1),n,0,12);
    
  • PARI
    concat([1], for(n=1,25, print1(sum(k=0,n, binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2), ", "))) \\ G. C. Greubel, Jun 05 2017
  • Perl
    use ntheory ":all"; for my $n (0..20) { say "$n ",vecsum(map{my $l=stirling($n,$,3); vecprod($l,$l); } 0..$n) } # _Dana Jacobsen, Mar 16 2017
    

Formula

a(n) = Sum_{k=0..n} lah(n,k)^2.
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2.
a(n) = hypergeometric([-n+1,-n+1,-n,-n],[1],1).
a(n) = (n!)^2 * hypergeometric([-n+1,-n+1],[1,2,2],1) for n > 0.
Recurrence: n*(16*n^3 - 96*n^2 + 185*n - 116)*a(n) = 2*(32*n^6 - 272*n^5 + 930*n^4 - 1668*n^3 + 1670*n^2 - 867*n + 164)*a(n-1) - (n-2)*(96*n^7 - 1056*n^6 + 4646*n^5 - 10500*n^4 + 12990*n^3 - 8644*n^2 + 2827*n - 364)*a(n-2) + 2*(n-3)*(n-2)^3*(32*n^6 - 336*n^5 + 1410*n^4 - 2978*n^3 + 3268*n^2 - 1731*n + 353)*a(n-3) - (n-4)^2*(n-3)^3*(n-2)^4*(16*n^3 - 48*n^2 + 41*n - 11)*a(n-4). - Vaclav Kotesovec, Sep 27 2016
a(n) ~ n^(2*n - 3/4) * exp(4*sqrt(n) - 2*n - 1) / (2^(3/2) * sqrt(Pi)) * (1 + 31/(96*sqrt(n)) + 937/(18432*n)). - Vaclav Kotesovec, Sep 27 2016