cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276984 Sum of squares of numbers less than n that do not divide n.

Original entry on oeis.org

0, 0, 4, 9, 29, 41, 90, 119, 194, 255, 384, 440, 649, 765, 980, 1155, 1495, 1654, 2108, 2324, 2811, 3185, 3794, 4050, 4874, 5351, 6110, 6664, 7713, 8155, 9454, 10075, 11309, 12235, 13610, 14295, 16205, 17209, 18840, 19930, 22139, 23085, 25584, 26808, 29029, 30861, 33510, 34614, 37974, 39670
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Examples

			a(3) = 4 because 3 has 2 divisors {1,3} therefore 1 non-divisor {2} and 2^2 = 4;
a(4) = 9 because 4 has 3 divisors {1,2,4} therefore 1 non-divisor {3} and 3^2 = 9;
a(5) = 29 because 5 has 2 divisors {1,5} therefore 3 non-divisors {2,3,4} and 2^2 + 3^2 + 4^2 = 29, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n + 1) ((2 n + 1)/6) - DivisorSigma[2, n], {n, 1, 50}]
    Table[Total[Complement[Range[n],Divisors[n]]^2],{n,50}] (* Harvey P. Dale, May 10 2018 *)
  • PARI
    a(n) = n*(n + 1)*(2*n + 1)/6 - sigma(n, 2); \\ Michel Marcus, Sep 29 2016

Formula

Dirichlet g.f.: (2 zeta(s-3) + 3*zeta(s-2) + zeta(s-1) - 6*zeta(s-2)*zeta(s))/6.
a(n) = n*(n + 1)*(2*n + 1)/6 - sigma_2(n).
a(n) = A000330(n) - A001157(n).