cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276985 Triangle read by rows: T(n,k) = number of k-dimensional elements in an n-dimensional cross-polytope, n>=1, 0<=k

Original entry on oeis.org

2, 4, 4, 6, 12, 8, 8, 24, 32, 16, 10, 40, 80, 80, 32, 12, 60, 160, 240, 192, 64, 14, 84, 280, 560, 672, 448, 128, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120
Offset: 1

Views

Author

Felix Fröhlich, Sep 24 2016

Keywords

Comments

It appears that this is 2*A193862 (but with a different offset) and that the sum of terms of the n-th row is A024023(n) = 3^n - 1. - Michel Marcus, Sep 29 2016

Examples

			T(4, 1..4) = 8, 24, 32, 16, because the 16-cell has 8 0-faces (vertices), 24 1-faces (edges), 32 2-faces (faces) and 16 3-faces (cells).
Triangle starts
2
4, 4
6, 12, 8
8, 24, 32, 16
10, 40, 80, 80, 32
12, 60, 160, 240, 192, 64
14, 84, 280, 560, 672, 448, 128
16, 112, 448, 1120, 1792, 1792, 1024, 256
18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
		

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486141589.

Crossrefs

Cf. A038207 (hypercube), A135278 (simplex).
Rows: A005843(n), A046092(n), A130809(n+2), A130810(n+3).
Columns: A000079(n), A001787(n), A001788(n), A001789(n+3).

Programs

  • Mathematica
    Table[2^(k + 1) Binomial[n, k + 1], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Sep 25 2016 *)
  • PARI
    T(n, k) = 2^(k+1)*binomial(n, k+1)
    trianglerows(n) = for(x=1, n, for(y=0, x-1, print1(T(x, y), ", ")); print(""))
    trianglerows(10) \\ print initial 10 rows of triangle

Formula

T(n,k) = 2^(k+1) * binomial(n, k+1) (cf. Coxeter, 1973, formula 7.22).
T(n,k) = A182059(n,k) = A013609(n,k) . - R. J. Mathar, May 03 2017
G.f.: 2*x/((1 - x)*(1 - x - 2*x*y)). - Stefano Spezia, Jul 17 2025