cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A277018 Numbers n for which A277017(n) = 0; range of A277022 sorted into ascending order.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 64, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 96, 97, 98, 100, 101, 102, 104, 105, 106, 108, 109, 112, 113, 114, 116, 117, 118, 120
Offset: 0

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Comments

Numbers such that no run of 1-bits has length >= A000040(1 + the total number of 0-bits anywhere right of that run in the binary expansion of n).
Indexing starts from zero as a(0) = 0 is a special case in this sequence.

Examples

			60 ("111100" in binary, A007088) is present as 4 < prime(2+1) = 5.
		

Crossrefs

Complement: A277019.
Positions of zeros in A277017.
Sequence A277022 sorted into ascending order.
Differs from its subsequence of A277008 for the first time at n=41, where a(41)=60, a value which is missing from A277008.

Formula

Other identitities:
A129251(A005940(1+a(n))) = 0 for all n.

A277019 Numbers not in range of A277022.

Original entry on oeis.org

3, 7, 11, 14, 15, 19, 23, 27, 29, 30, 31, 35, 39, 43, 46, 47, 51, 55, 59, 61, 62, 63, 67, 71, 75, 78, 79, 83, 87, 91, 93, 94, 95, 99, 103, 107, 110, 111, 115, 119, 123, 124, 125, 126, 127, 131, 135, 139, 142, 143, 147, 151, 155, 157, 158, 159, 163, 167, 171, 174, 175, 179, 183, 187, 189, 190, 191, 195, 199, 203, 206, 207, 211, 215
Offset: 1

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Comments

Numbers such that at least one run of 1-bits in their binary expansion has length >= A000040(1 + the total number of 0-bits anywhere right of that run).
Numbers n for which A277017(n) > 0.
Numbers n for which A129251(A005940(1+n)) > 0.

Examples

			3 ("11" in binary, A007088) is present as the length of that only run of 1's is 2, and 2 >= prime(1+0), where 0 is the total number of 0's to the right of that run.
60 ("111100" in binary) is NOT present as 4 < 5 = prime(2+1).
		

Crossrefs

Complement: A277018.
Positions of nonzeros in A277017.
Subsequence of A277009 from which this differs for the first time at n=20, where a(20)=61, skipping the value 60 present in A277009.

A277021 Left inverse of A277022.

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 4, 3, 30, 7, 8, 4, 12, 5, 6, 4, 210, 31, 32, 8, 36, 9, 10, 5, 60, 13, 14, 6, 18, 7, 8, 5, 2310, 211, 212, 32, 216, 33, 34, 9, 240, 37, 38, 10, 42, 11, 12, 6, 420, 61, 62, 14, 66, 15, 16, 7, 90, 19, 20, 8, 24, 9, 10, 6, 30030, 2311, 2312, 212, 2316, 213, 214, 33, 2340, 217, 218, 34, 222, 35, 36, 10, 2520, 241, 242
Offset: 0

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Crossrefs

Left inverse of A277022.
Cf. also A277017.

Programs

  • Python
    from sympy import primorial, primepi, prime, factorint, floor, log
    def a002110(n): return 1 if n<1 else primorial(n)
    def a276085(n):
        f=factorint(n)
        return sum([f[i]*a002110(primepi(i) - 1) for i in f])
    def A(n): return n - 2**int(floor(log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a(n): return a276085(b(n - 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017
  • Scheme
    (define (A277021 n) (let loop ((s 0) (n n) (r 0) (i 1) (pr 1)) (cond ((zero? n) (+ s (* r pr))) ((even? n) (loop (+ s (* r pr)) (/ n 2) 0 (+ 1 i) (* (A000040 i) pr))) (else (loop s (/ (- n 1) 2) (+ 1 r) i pr)))))
    

Formula

a(n) = A276085(A005940(1+n)).
Other identities. For all n >= 0:
a(A277022(n)) = n.

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
		

Crossrefs

Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.

Programs

  • Mathematica
    nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
    nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
  • Python
    from sympy import prime, primefactors
    def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
    def a276086(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m
    def a(n): return Omega(a276086(n))
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024

A277012 Factorial base representation of n is rewritten as a base-2 number with each nonzero digit k replaced by a run of k 1's (followed by one extra zero if not the rightmost run of 1's) and with each 0 kept as 0.

Original entry on oeis.org

0, 1, 2, 5, 6, 13, 4, 9, 10, 21, 22, 45, 12, 25, 26, 53, 54, 109, 28, 57, 58, 117, 118, 237, 8, 17, 18, 37, 38, 77, 20, 41, 42, 85, 86, 173, 44, 89, 90, 181, 182, 365, 92, 185, 186, 373, 374, 749, 24, 49, 50, 101, 102, 205, 52, 105, 106, 213, 214, 429, 108, 217, 218, 437, 438, 877, 220, 441, 442, 885, 886, 1773, 56, 113, 114, 229, 230, 461, 116, 233
Offset: 0

Views

Author

Antti Karttunen, Sep 25 2016

Keywords

Examples

			9 = "111" in factorial base (3! + 2! + 1! = 9) is converted to three 1-bits with separating zeros between, in binary as "10101" = A007088(21), thus a(9) = 21.
91 = "3301" in factorial base (91 = 3*4! + 3*3! + 1!) is converted to binary number "1110111001" = A007088(953), thus a(91) = 953. Between the rightmost 1-runs the other zero comes from the factorial base representation, while the other zero is an extra separating zero inserted after each run of 1-bits apart from the rightmost 1-run. The single zero between the two leftmost 1-runs is similarly used to separate the two "unary representations" of 3's.
		

Crossrefs

Cf. A277008 (terms sorted into ascending order).
Cf. A277011 (a left inverse).
Differs from analogous A277022 for the first time at n=24, where a(24) = 8, while A277022(24) = 60.

Programs

  • Scheme
    (define (A277012 n) (let loop ((n n) (z 0) (i 2) (j 0)) (if (zero? n) z (let ((d (remainder n i))) (loop (quotient n i) (+ z (* (A000225 d) (A000079 j))) (+ 1 i) (+ 1 j d))))))

Formula

a(n) = A156552(A276076(n)).
Other identities. For all n >= 0:
A277011(a(n)) = n.
A005940(1+a(n)) = A276076(n).
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A000120(a(n)) = A034968(n).
A069010(a(n)) = A060130(n).
A227349(a(n)) = A227153(n).

A277017 Number of maximal runs of 1-bits (in binary expansion of n) such that the length of run >= A000040(1 + the total number of zeros to the right of that run).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0
Offset: 0

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Comments

a(n) = number of 1-runs in binary expansion of n that exceed the length allotted to that run by primorial base coding used in A277022. If a(n) = 0, then n is in the range of A277022.

Examples

			For n=3, "11" in binary, the only maximal run of 1-bits is of length 2, and 2 >= prime(0+1) (where 0 is the total number of zeros to the right of it), thus a(3) = 1.
For n=59, "111011" in binary, both the length of run "11" at the least significant end exceeds the limit (see case n=3 above), and also the length of run "111" >= prime(1 + the total number of 0's to the right of it) = prime(2) = 3, thus a(59) = 1+1 = 2.
For n=60, "111100" in binary, the length of only run of 1's is 4, and 4 < prime(2+1) = 5, thus a(60) = 0.
		

Crossrefs

Cf. A277018 (positions of zeros), A277019 (of nonzeros).
Differs from similar A277007 for the first time at n=60, where a(60)=0, while A277007(60)=1.

Programs

  • Scheme
    (define (A277017 n) (let loop ((e 0) (n n) (z 0) (r 0)) (cond ((zero? n) (+ e (if (>= r (A000040 (+ 1 z))) 1 0))) ((even? n) (loop (+ e (if (>= r (A000040 (+ 1 z))) 1 0)) (/ n 2) (+ 1 z) 0)) (else (loop e (/ (- n 1) 2) z (+ 1 r))))))

Formula

a(n) = A129251(A005940(1+n)).
Showing 1-7 of 7 results.