A277131 Magic numbers of anti-Mackay icosahedra.
45, 127, 279, 521, 873, 1355, 1987, 2789, 3781, 4983, 6415, 8097, 10049, 12291, 14843, 17725, 20957, 24559, 28551, 32953, 37785, 43067, 48819, 55061, 61813, 69095, 76927, 85329, 94321, 103923, 114155, 125037, 136589, 148831, 161783, 175465, 189897, 205099
Offset: 2
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- D. Bochicchio and R. Ferrando, Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys, Nano Letters, Vol. 10, No. 10 (2010), 4211-4216.
- Index entries for sequences related to magic numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
A277131:=n->11-(19*n)/3+5*n^2+(10*n^3)/3: seq(A277131(n), n=2..50); # Wesley Ivan Hurt, Oct 07 2016
-
Mathematica
DeleteCases[CoefficientList[Series[x^2*(45 - 53 x + 41 x^2 - 13 x^3)/(1 - x)^4, {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 02 2016 *)
-
PARI
a(n) = (2*n+1) * (5*n^2+5*n+3) / 3 - 10*(n-1)
-
PARI
Vec(x^2*(45-53*x+41*x^2-13*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, Oct 01 2016
Formula
a(n) = 10/3*n^3 + 25*n^2 + 161/3*n + 45 with offset 0.
From Colin Barker, Oct 01 2016: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
a(n) = 11-(19*n)/3+5*n^2+(10*n^3)/3.
G.f.: x^2*(45-53*x+41*x^2-13*x^3) / (1-x)^4.
(End)