cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277131 Magic numbers of anti-Mackay icosahedra.

Original entry on oeis.org

45, 127, 279, 521, 873, 1355, 1987, 2789, 3781, 4983, 6415, 8097, 10049, 12291, 14843, 17725, 20957, 24559, 28551, 32953, 37785, 43067, 48819, 55061, 61813, 69095, 76927, 85329, 94321, 103923, 114155, 125037, 136589, 148831, 161783, 175465, 189897, 205099
Offset: 2

Views

Author

Felix Fröhlich, Oct 01 2016

Keywords

Crossrefs

Programs

  • Maple
    A277131:=n->11-(19*n)/3+5*n^2+(10*n^3)/3: seq(A277131(n), n=2..50); # Wesley Ivan Hurt, Oct 07 2016
  • Mathematica
    DeleteCases[CoefficientList[Series[x^2*(45 - 53 x + 41 x^2 - 13 x^3)/(1 - x)^4, {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 02 2016 *)
  • PARI
    a(n) = (2*n+1) * (5*n^2+5*n+3) / 3 - 10*(n-1)
    
  • PARI
    Vec(x^2*(45-53*x+41*x^2-13*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, Oct 01 2016

Formula

a(n) = A005902(n) - A008592(n-1).
a(n) = 10/3*n^3 + 25*n^2 + 161/3*n + 45 with offset 0.
From Colin Barker, Oct 01 2016: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
a(n) = 11-(19*n)/3+5*n^2+(10*n^3)/3.
G.f.: x^2*(45-53*x+41*x^2-13*x^3) / (1-x)^4.
(End)