A277168 Coefficients in the series reversion of x*exp(-x^2).
1, 6, 300, 41160, 11022480, 4870182240, 3211179491520, 2955402450000000, 3619848890071814400, 5693251850259515942400, 11182902317022859155532800, 26829777470359851910918195200, 77205601373291015625000000000000, 262462731609500617105685266652160000, 1040649406375513845021644881423595520000
Offset: 1
Keywords
Examples
E.g.f.: A(x) = x + 6*x^3/3! + 300*x^5/5! + 41160*x^7/7! + 11022480*x^9/9! + 4870182240*x^11/11! + 3211179491520*x^13/13! + 2955402450000000*x^15/15! +... such that A( x*exp(-x^2) ) = x. E.g.f. may also be written A(x) = x + 3^0*x^3/1! + 5^1*x^5/2! + 7^2*x^7/3! + 9^3*x^9/4! + 11^4*x^11/5! + ... which satisfies: A(x) = x*exp(A(x)^2). The square of the e.g.f. may be expressed as: A(x)^2 = 2^0*x^2/1! + 4^1*x^4/2! + 6^2*x^6/3! + 8^3*x^8/4! + 10^4*x^10/5! + ... which equals LambertW(-2*x^2)/(-2).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..195
Crossrefs
Cf. A201685.
Programs
-
GAP
List([1..15], n-> Binomial(2*n-1, n-1)*(2*n-1)^(n-2)*Factorial(n)); # G. C. Greubel, Jan 08 2020
-
Magma
[Binomial(2*n-1, n-1)*(2*n-1)^(n-2)*Factorial(n): n in [1..15]]; // G. C. Greubel, Jan 08 2020
-
Maple
seq( binomial(2*n-1, n-1)*(2*n-1)^(n-2)*n!, n=1..15); # G. C. Greubel, Jan 08 2020
-
Mathematica
Table[Binomial[2*n-1, n-1]*(2*n-1)^(n-2)*n!, {n, 1, 15}] (* Vaclav Kotesovec, Oct 07 2016 *)
-
PARI
{a(n) = (2*n-1)! * polcoeff( serreverse(x*exp(-x^2 +O(x^(2*n)))),2*n-1)} for(n=1,20,print1(a(n),", "))
-
PARI
{a(n) = binomial(2*n-1, n-1) * (2*n-1)^(n-2) * n! } for(n=1,20,print1(a(n),", "))
-
Sage
[binomial(2*n-1, n-1)*(2*n-1)^(n-2)*factorial(n) for n in (1..15)] # G. C. Greubel, Jan 08 2020
Formula
E.g.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) / (2*n-1)! satisfies:
(1) A( x*exp(-x^2) ) = x.
(2) A(x) = x*exp(A(x)^2).
(3) A(x) = Sum_{n>=1} (2*n-1)^(n-2) * x^(2*n-1) / (n-1)!.
(4) A(x)^2 = Sum_{n>=1} (2*n)^(n-1) * x^(2*n) / n!.
(5) A(x) = sqrt( LambertW(-2*x^2)/(-2) ).
a(n) = binomial(2*n-1, n-1) * (2*n-1)^(n-2) * n!.
a(n) ~ 2^(3*n-5/2) * n^(2*n-2) / exp(n+1/2). - Vaclav Kotesovec, Oct 07 2016
Comments