cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277176 Exponential convolution of Catalan numbers and factorial numbers.

Original entry on oeis.org

1, 2, 6, 23, 106, 572, 3564, 25377, 204446, 1844876, 18465556, 203179902, 2438366836, 31699511768, 443795839192, 6656947282725, 106511191881270, 1810690391626380, 32592427526913540, 619256124778620450, 12385122502136529420, 260087572569333384840
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2016

Keywords

Comments

a(n) = number of permutations of [n+1] in which the first entry does not start a (classical) 1234 pattern. The number of such permutations with first entry i is n!/(n + 1 - i)! C(n + 1 - i) where C(n) is the Catalan number A000108(n). - David Callan, Jun 12 2017

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
         ((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020 *)

Formula

E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).
a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.
a(n) ~ exp(2) * BesselI(2,2) * n!. - Vaclav Kotesovec, Oct 13 2016