A277176 Exponential convolution of Catalan numbers and factorial numbers.
1, 2, 6, 23, 106, 572, 3564, 25377, 204446, 1844876, 18465556, 203179902, 2438366836, 31699511768, 443795839192, 6656947282725, 106511191881270, 1810690391626380, 32592427526913540, 619256124778620450, 12385122502136529420, 260087572569333384840
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n+1, ((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1)) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020 *)
Formula
E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).
a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.
a(n) ~ exp(2) * BesselI(2,2) * n!. - Vaclav Kotesovec, Oct 13 2016
Comments