cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277235 Decimal expansion of 2/(Gamma(3/4))^4.

Original entry on oeis.org

8, 8, 6, 9, 4, 1, 1, 6, 8, 5, 7, 8, 1, 1, 5, 4, 0, 5, 4, 1, 1, 5, 2, 5, 3, 6, 1, 3, 5, 4, 5, 2, 1, 5, 3, 8, 6, 8, 6, 4, 9, 9, 9, 1, 9, 6, 4, 2, 5, 9, 8, 3, 4, 8, 3, 0, 9, 8, 6, 0, 9, 8, 9, 8, 1, 3, 1, 7, 8, 2, 5, 5, 9, 4, 8, 1, 9, 2, 7, 9, 7, 0, 6, 9, 1, 5, 2, 6, 4, 7, 7, 9, 4, 9, 8, 1, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2016

Keywords

Comments

This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
The proof of Hardy and Whipple mentioned in the Hardy reference reduces this series to (2/Pi)*Morley's series (for m=1/2). For this series see A277232 and A091670.

Examples

			2/Gamma(3/4)^4 = 0.88694116857811540541152...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
  • Mathematica
    RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
  • PARI
    2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
    

Formula

Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
Equals A060294 * A091670.
For (1+4*k)*((2*k-1)!!/(2*k)!!)^5 see A074799(k) / A074800(k).
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A088538 * A014549^2.
Equals A263809/Pi. (End)