cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 08 2016

Keywords

Examples

			For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.
		

Crossrefs

Cf. A059343, A277280 (with signs).

Programs

  • Mathematica
    Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
  • PARI
    a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016
    
  • Python
    from sympy import hermite, Poly
    def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017