A277281 Maximal coefficient (ignoring signs) in Hermite polynomial of order n.
1, 2, 4, 12, 48, 160, 720, 3360, 13440, 80640, 403200, 2217600, 13305600, 69189120, 484323840, 2905943040, 19372953600, 131736084480, 846874828800, 6436248698880, 42908324659200, 337903056691200, 2477955749068800, 18997660742860800, 151981285942886400
Offset: 0
Keywords
Examples
For n = 5, H_5(x) = 32*x^5 - 160*x^3 + 120*x. The maximal coefficient (ignoring signs) is 160, so a(5) = 160.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..715
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Wikipedia, Hermite polynomials.
Programs
-
Mathematica
Table[Max@Abs@CoefficientList[HermiteH[n, x], x], {n, 0, 25}]
-
PARI
a(n) = vecmax(apply(x->abs(x), Vec(polhermite(n)))); \\ Michel Marcus, Oct 09 2016
-
Python
from sympy import hermite, Poly def a(n): return max(map(abs, Poly(hermite(n, x), x).coeffs())) # Indranil Ghosh, May 26 2017