cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A277295 G.f. A(x,y) satisfies: A( x - y*A(x,y)^2, y) = x + (1-y)*A(x,y)^2, where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 5, 14, 5, 0, 14, 74, 76, 14, 0, 42, 352, 698, 378, 42, 0, 132, 1588, 5088, 5404, 1808, 132, 0, 429, 6946, 32461, 56410, 37546, 8484, 429, 0, 1430, 29786, 189940, 486550, 535410, 244220, 39446, 1430, 0, 4862, 126008, 1046190, 3690410, 6036632, 4597402, 1522466, 182732, 4862, 0, 16796, 527900, 5511440, 25518020, 57890956, 66031704, 36873036, 9227504, 846248, 16796, 0, 58786, 2195580, 28061890, 164565240, 493085566, 784844330, 661152388, 281873618, 54885974, 3926338, 58786, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

More generally, we have the following related identity.
Given functions F and G with F(0)=0, F'(0)=1, G(0)=0, G'(0)=0,
if F(x - y*G(x)) = x + (1-y)*G(x), then
(1) F(x) = x + G( y*F(x) + (1-y)*x ),
(2) y*F(x) + (1-y)*x = Series_Reversion(x - y*G(x)),
(3) F(x) = x + G(x + y*G(x + y*G(x + y*G(x +...)))),
(4) F(x) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x)^n / n!.
The g.f. of this sequence A(x,y) equals F(x) in the above when G(x) = F(x)^2.

Examples

			G.f.: A(x,y)  = x + x^2 + (2*y + 2)*x^3 + (5*y^2 + 14*y + 5)*x^4 + (14*y^3 + 76*y^2 + 74*y + 14)*x^5 + (42*y^4 + 378*y^3 + 698*y^2 + 352*y + 42)*x^6 + (132*y^5 + 1808*y^4 + 5404*y^3 + 5088*y^2 + 1588*y + 132)*x^7 + (429*y^6 + 8484*y^5 + 37546*y^4 + 56410*y^3 + 32461*y^2 + 6946*y + 429)*x^8 + (1430*y^7 + 39446*y^6 + 244220*y^5 + 535410*y^4 + 486550*y^3 + 189940*y^2 + 29786*y + 1430)*x^9 + (4862*y^8 + 182732*y^7 + 1522466*y^6 + 4597402*y^5 + 6036632*y^4 + 3690410*y^3 + 1046190*y^2 + 126008*y + 4862)*x^10 +...
such that
A( x - y*A(x,y)^2, y)  =  x + (1-y)*A(x,y)^2.
Also,
A(x,y) = x + A( y*A(x,y) + (1-y)*x, y)^2.
...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
1, 0;
2, 2, 0;
5, 14, 5, 0;
14, 74, 76, 14, 0;
42, 352, 698, 378, 42, 0;
132, 1588, 5088, 5404, 1808, 132, 0;
429, 6946, 32461, 56410, 37546, 8484, 429, 0;
1430, 29786, 189940, 486550, 535410, 244220, 39446, 1430, 0;
4862, 126008, 1046190, 3690410, 6036632, 4597402, 1522466, 182732, 4862, 0;
16796, 527900, 5511440, 25518020, 57890956, 66031704, 36873036, 9227504, 846248, 16796, 0;
58786, 2195580, 28061890, 164565240, 493085566, 784844330, 661152388, 281873618, 54885974, 3926338, 58786, 0; ...
RELATED SEQUENCES.
Given T(n,k) is the coefficient of x^n*y^k in g.f. A(x,y),
if b(n) = Sum_{k=0..n-1} T(n,k) * p^k * q^(n-k-1)
then B(x) = Sum_{n>=1} b(n)*x^n satisfies
(1) B(x - p*B(x)^2) = x + (q-p)*B(x)^2
(2) B(x)  =  x + B( p*B(x) + (q-p)*x )^2.
Examples:
A213591(n) = sum(k=0,n-1, T(n,k) )
A275765(n) = sum(k=0,n-1, T(n,k) * 2^(n-k) )
A276360(n) = sum(k=0,n-1, T(n,k) * 3^(n-k-1) )
A276361(n) = sum(k=0,n-1, T(n,k) * 2^k * 3^(n-k-1) )
A276362(n) = sum(k=0,n-1, T(n,k) * 4^(n-k-1) )
A276363(n) = sum(k=0,n-1, T(n,k) * 3^k * 4^(n-k-1) )
A276365(n) = sum(k=0,n-1, T(n,k) * 2^k )
A277300(n) = sum(k=0,n-1, T(n,k) * 5^(n-k-1) )
A277301(n) = sum(k=0,n-1, T(n,k) * 2^k * 5^(n-k-1) )
A277302(n) = sum(k=0,n-1, T(n,k) * 3^k * 5^(n-k-1) )
A277303(n) = sum(k=0,n-1, T(n,k) * 4^k * 5^(n-k-1) )
A277304(n) = sum(k=0,n-1, T(n,k) * 6^(n-k-1) )
A277305(n) = sum(k=0,n-1, T(n,k) * 5^k * 6^(n-k-1) )
A277306(n) = sum(k=0,n-1, T(n,k) * (-1)^k )
A277307(n) = sum(k=0,n-1, T(n,k) * 3^k )
A277308(n) = sum(k=0,n-1, T(n,k) * 3^k * 2^(n-k-1) )
A277309(n) = sum(k=0,n-1, T(n,k) * 5^k * 2^(n-k-1) )
A277310(n) = sum(k=0,n-1, T(n,k) * 4^k )
A277311(n) = sum(k=0,n-1, T(n,k) * 5^k )
...
		

Crossrefs

Cf. A000108 (column 0), A138156 (column 1), A277296 (column 2), A277297 (diagonal), A277298 (central terms T(2*n-1,n-1)), A277299 (central terms T(2*n,n-1)).

Programs

  • Mathematica
    c[n_] := c[n] = Module[{A}, A[x_] = x; Do[A[x_] = x + A[y A[x] + (1-y) x + x O[x]^j]^2, {j, n}] // Normal; SeriesCoefficient[A[x], {x, 0, n}] // Expand];
    T[n_, k_] := SeriesCoefficient[c[n], {y, 0, k}];
    Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {T(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "));print(""))

Formula

G.f. A(x,y) also satisfies:
(1) A(x,y) = x + A( y*A(x,y) + (1-y)*x, y)^2.
(2) y*A(x,y) + (1-y)*x = Series_Reversion( x - y*A(x,y)^2 ).
(3) y*x + (1-y)*B(x,y) = Series_Reversion( x + (1-y)*A(x,y)^2 ), where B( A(x,y), y) = x.
(4) A(x,y) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) A(x,y)^(2*n) / n!.
In formulas 2 and 3, the series reversion is taken with respect to variable x.
T(n+1,0) = T(n+1,n-1) = binomial(2*n,n)/(n+1) = A000108(n) for n>=1.
T(n+1,1) = 4^n - (3*n+1)*binomial(2*n,n)/(n+1) = A138156(n-1) for n>=1.

A277301 G.f. satisfies: A(x - 2*A(x)^2) = x + 3*A(x)^2.

Original entry on oeis.org

1, 5, 70, 1425, 35410, 999210, 30855820, 1020407105, 35642665050, 1302725802510, 49490450201460, 1944619121474970, 78734794663758580, 3275324221277662900, 139667810517388712600, 6093781146211490413825, 271623891311306597652650, 12353670814537544856558950, 572686428900679117724156900, 27036308383662996662940155550, 1298856469077709523772645582300
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 5*x^2 + 70*x^3 + 1425*x^4 + 35410*x^5 + 999210*x^6 + 30855820*x^7 + 1020407105*x^8 + 35642665050*x^9 + 1302725802510*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 2*F^2) - 3*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 5 * A( 3*x/5 + 2*A(x)/5 )^2.
(2) A(x) = -3*x/2 + 5/2 * Series_Reversion(x - 2*A(x)^2).
(3) R(x) = -2*x/3 + 5/3 * Series_Reversion(x + 3*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/5 - R(x)/5 ) ) = 2*x/5 + 3*R(x)/5, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 2^k * 5^(n-k-1).

A277302 G.f. satisfies: A(x - 3*A(x)^2) = x + 2*A(x)^2.

Original entry on oeis.org

1, 5, 80, 1900, 55490, 1848660, 67630080, 2657251005, 110560510400, 4824793769260, 219334788340040, 10334817935549420, 502814686712631520, 25184673137026274600, 1295595210394570426800, 68326193725188929358600, 3688253200687778850553800, 203524353764195058692833200, 11468618360097679305600299400, 659345494779348103800864088800, 38644445208422874351089132287200
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 5*x^2 + 80*x^3 + 1900*x^4 + 55490*x^5 + 1848660*x^6 + 67630080*x^7 + 2657251005*x^8 + 110560510400*x^9 + 4824793769260*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 3*F^2) - 2*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 5 * A( 2*x/5 + 3*A(x)/5 )^2.
(2) A(x) = -2*x/3 + 5/3 * Series_Reversion(x - 3*A(x)^2).
(3) R(x) = -3*x/2 + 5/2 * Series_Reversion(x + 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/5 - R(x)/5 ) ) = 3*x/5 + 2*R(x)/5, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 3^k * 5^(n-k-1).

A277303 G.f. satisfies: A(x - 4*A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 5, 90, 2425, 80630, 3065810, 128271540, 5774538945, 275743894750, 13832116773110, 723891526915820, 39323723086794730, 2208811824884144540, 127904686371063157700, 7617441454740093233000, 465691699545009287055825, 29179499379365501297165550, 1871486497257264286902367950, 122731222232573572625823907900, 8222122259910817121846641763950, 562251437460415648354364719018900
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 5*x^2 + 90*x^3 + 2425*x^4 + 80630*x^5 + 3065810*x^6 + 128271540*x^7 + 5774538945*x^8 + 275743894750*x^9 + 13832116773110*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 4*F^2) - F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 5 * A( x/5 + 4*A(x)/5 )^2.
(2) A(x) = -x/4 + 5/4 * Series_Reversion(x - 4*A(x)^2).
(3) R(x) = -4*x + 5 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/5 - R(x)/5 ) ) = 4*x/5 + R(x)/5, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 4^k * 5^(n-k-1).

A277304 G.f. satisfies: A(x - A(x)^2) = x + 5*A(x)^2.

Original entry on oeis.org

1, 6, 84, 1614, 36948, 947412, 26334072, 778107150, 24133349532, 778923367284, 26000354998920, 893459845502916, 31496296778304936, 1135911643635146712, 41820127450763818896, 1568983653501973667262, 59898843849911992994340, 2324166762372316001442540, 91565378725229449617874824, 3659689884915567083966937156, 148284110214725433666804447912
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 6*x^2 + 84*x^3 + 1614*x^4 + 36948*x^5 + 947412*x^6 + 26334072*x^7 + 778107150*x^8 + 24133349532*x^9 + 778923367284*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 5*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 6 * A( 5*x/6 + A(x)/6 )^2.
(2) A(x) = -5*x + 6 * Series_Reversion(x - A(x)^2).
(3) R(x) = -x/5 + 6/5 * Series_Reversion(x + 5*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/6 - R(x)/6 ) ) = x/6 + 5*R(x)/6, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 6^(n-k-1).

A277305 G.f. satisfies: A(x - 5*A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 6, 132, 4350, 176964, 8235252, 421814232, 23252672574, 1359954622860, 83572511671092, 5359130778285096, 356786692299782916, 24565803644793789192, 1744056102774572824920, 127369971591949093219920, 9550397045409732902387790, 734084078724419876468356500, 57766855968717521513179054860, 4648888743682938087701732224680
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 6*x^2 + 132*x^3 + 4350*x^4 + 176964*x^5 + 8235252*x^6 + 421814232*x^7 + 23252672574*x^8 + 1359954622860*x^9 + 83572511671092*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 5*F^2) - F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 6 * A( x/6 + 5*A(x)/6 )^2.
(2) A(x) = -x/5 + 6/5 * Series_Reversion(x - 5*A(x)^2).
(3) R(x) = -5*x + 6 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/6 - R(x)/6 ) ) = 5*x/6 + R(x)/6, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 5^k * 6^(n-k-1).

A277306 G.f. satisfies: A(x + A(x)^2) = x + 2*A(x)^2.

Original entry on oeis.org

1, 1, 0, -4, 2, 52, -96, -975, 4240, 18460, -183448, -101716, 7373216, -23650520, -230147920, 2198499720, 664806792, -124144328784, 703989911368, 3189500786336, -68800373946656, 284782780974128, 2913071885553608, -47063844278787824, 170357147598919640, 2621783446017272624, -41775596442709927664, 166446909354828214608
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 - 4*x^4 + 2*x^5 + 52*x^6 - 96*x^7 - 975*x^8 + 4240*x^9 + 18460*x^10 - 183448*x^11 - 101716*x^12 + 7373216*x^13 - 23650520*x^14 - 230147920*x^15 + 2198499720*x^16 + 664806792*x^17 - 124144328784*x^18 + 703989911368*x^19 + 3189500786336*x^20 +...
such that
A(x + A(x)^2) = x + 2*A(x)^2
also,
A(x) = x + A( 2*x - A(x) )^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + x^4 - 8*x^5 - 4*x^6 + 108*x^7 - 72*x^8 - 2158*x^9 + 6118*x^10 + 46376*x^11 - 319856*x^12 - 618132*x^13 + 14320096*x^14 - 30385024*x^15 - 505460559*x^16 + 3846420096*x^17 + 5951934200*x^18 - 243911854368*x^19 + 1136290742936*x^20 +...
A(x + A(x)^2) = x + 2*x^2 + 4*x^3 + 2*x^4 - 16*x^5 - 8*x^6 + 216*x^7 - 144*x^8 - 4316*x^9 + 12236*x^10 + 92752*x^11 - 639712*x^12 +...
which equals x + 2*A(x)^2.
Series_Reversion(A(x)) = x - x^2 + 2*x^3 - x^4 - 12*x^5 + 32*x^6 + 156*x^7 - 1140*x^8 - 1178*x^9 + 41270*x^10 - 105480*x^11 - 1274828*x^12 + 10307292*x^13 + 13297704*x^14 - 609624768*x^15 + 2614447647*x^16 + 21136068780*x^17 - 300421913212*x^18 + 590894313656*x^19 + 17309654827168*x^20 +...
which equals 2*x - Series_Reversion(x + 2*A(x)^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x + F^2) - 2*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 2*x - A(x) )^2.
(2) A(x) = 2*x - Series_Reversion(x + A(x)^2).
(3) R(x) = x/2 + 1/2 * Series_Reversion(x + 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = -x + 2*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} (-1)^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} (-1)^k * A277295(n,k).

A277307 G.f. satisfies: A(x - 3*A(x)^2) = x - 2*A(x)^2.

Original entry on oeis.org

1, 1, 8, 92, 1298, 20988, 375120, 7252065, 149534312, 3256987724, 74418884792, 1774657501252, 43995940957120, 1130453689908568, 30031716838365552, 823263454676130312, 23249951990747403528, 675517165191231019920, 20168579968950108809736, 618158189347428262782816, 19432224179107494743506272, 626034612821085407187912624
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 8*x^3 + 92*x^4 + 1298*x^5 + 20988*x^6 + 375120*x^7 + 7252065*x^8 + 149534312*x^9 + 3256987724*x^10 +...
such that A(x - 3*A(x)^2) = x - 2*A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 17*x^4 + 200*x^5 + 2844*x^6 + 46044*x^7 + 821448*x^8 + 15829010*x^9 + 325121270*x^10 + 7052584040*x^11 + 160492981648*x^12 + 3812351286940*x^13 + 94164503583424*x^14 + 2411159638210752*x^15 + 63849498902714289*x^16 +...
A(x - 3*A(x)^2) = x - 2*x^2 - 4*x^3 - 34*x^4 - 400*x^5 - 5688*x^6 - 92088*x^7 - 1642896*x^8 - 31658020*x^9 - 650242540*x^10 +...
which equals x - 2*A(x)^2.
Series_Reversion(x - 3*A(x)^2) = x + 3*x^2 + 24*x^3 + 276*x^4 + 3894*x^5 + 62964*x^6 + 1125360*x^7 + 21756195*x^8 + 448602936*x^9 + 9770963172*x^10 +...
which equals -2*x + 3*A(x).
A( 3*A(x) - 2*x ) = x + 4*x^2 + 38*x^3 + 497*x^4 + 7784*x^5 + 137538*x^6 + 2656584*x^7 + 55045728*x^8 + 1208709044*x^9 + 27891950516*x^10 +...
which equals sqrt( A(x) - x ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-3*F^2) + 2*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 3*A(x) - 2*x )^2.
(2) A(x) = 2*x/3 + 1/3 * Series_Reversion(x - 3*A(x)^2).
(3) R(x) = 3*x/2 - 1/2 * Series_Reversion(x - 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = 3*x - 2*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} 3^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 3^k.

A277308 G.f. satisfies: A(x - 3*A(x)^2) = x - A(x)^2.

Original entry on oeis.org

1, 2, 20, 298, 5492, 116124, 2710776, 68308170, 1831522940, 51744512380, 1529687560328, 47075470016012, 1502258036769256, 49560341916549320, 1686236991420431760, 59054595629732284890, 2125432920387784135812, 78509698415432235272292, 2972996232264052816975752, 115303660044380692013332428
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 20*x^3 + 298*x^4 + 5492*x^5 + 116124*x^6 + 2710776*x^7 + 68308170*x^8 + 1831522940*x^9 + 51744512380*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-3*F^2) + F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 2 * A( 3*A(x)/2 - x/2 )^2.
(2) A(x) = x/3 + 2/3 * Series_Reversion(x - 3*A(x)^2).
(3) R(x) = 3*x - 2 * Series_Reversion(x - A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/2 - R(x)/2 ) ) = 3*x/2 - R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 3^k * 2^(n-k-1).

A277309 G.f. satisfies: A(x - 5*A(x)^2) = x - 3*A(x)^2.

Original entry on oeis.org

1, 2, 28, 570, 14284, 410604, 13046728, 448252682, 16417945620, 634848045084, 25737059674104, 1088311917852828, 47813839403065432, 2175881570186952520, 102316326149365110320, 4961686220242926811690, 247733650768933667153660, 12718117037478356041212500, 670565414769224589112024760, 36274908884974158393988101900, 2011581759381610503724213971960
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 28*x^3 + 570*x^4 + 14284*x^5 + 410604*x^6 + 13046728*x^7 + 448252682*x^8 + 16417945620*x^9 + 634848045084*x^10 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-5*F^2) + 3*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 2 * A( 5*A(x)/2 - 3*x/2 )^2.
(2) A(x) = 3*x/5 + 2/5 * Series_Reversion(x - 5*A(x)^2).
(3) R(x) = 5*x/3 - 2/3 * Series_Reversion(x - 3*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/2 - R(x)/2 ) ) = 5*x/2 - 3*R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 5^k * 2^(n-k-1).
Showing 1-10 of 12 results. Next