cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277366 Composite numbers k such that phi(k)*lambda(k) divides (k-1)^2, where phi(k) = A000010(k) and lambda(k) = A002322(k).

Original entry on oeis.org

1729, 670033, 6840001, 83099521, 193708801, 321197185, 367804801, 484662529, 1752710401, 2320690177, 5064928705, 12820178449, 32220147601, 257124585601, 270177600001, 301036080385, 7043394657601, 13237329899521, 14276860416001, 85661522006401, 119377939968001
Offset: 1

Views

Author

Thomas Ordowski, Oct 11 2016

Keywords

Comments

Are there infinitely many such numbers?
Such k must be a Carmichael number since phi(k)*lambda(k) = m*lambda(k)^2 for some integer m. - Nathan McNew, Oct 11 2016

Crossrefs

Subsequence of A002997 and of A173703.

Programs

  • Mathematica
    Select[Range[10^8], CompositeQ[#] && Divisible[(# - 1)^2, EulerPhi[#] * CarmichaelLambda[#]] &] (* Amiram Eldar, Feb 02 2019 *)
  • PARI
    lista(nn) = forcomposite(n=4, nn, if (((n-1)^2 % (eulerphi(n)*lcm(znstar(n)[2]))) == 0, print1(n, ", "));); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    is(n,f=factor(n))=(n-1)^2%(eulerphi(f)*lcm(znstar(f)[2])) == 0 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Oct 11 2016

Extensions

a(2)-a(3) from Michel Marcus, Oct 11 2016
a(4)-a(8) from Charles R Greathouse IV, Oct 11 2016
a(9)-a(13) from David A. Corneth, Oct 11 2016
More terms from Amiram Eldar, Feb 02 2019