A277368 Numbers such that the number of their divisors divide the sum of their aliquot parts.
1, 4, 10, 16, 25, 26, 34, 56, 58, 60, 64, 74, 81, 82, 90, 96, 100, 106, 120, 121, 122, 132, 146, 178, 184, 194, 202, 204, 216, 218, 226, 234, 248, 274, 276, 289, 298, 306, 312, 314, 346, 348, 362, 364, 376, 386, 394, 408, 440, 458, 466, 480, 482, 492, 504, 514
Offset: 1
Examples
sigma(26) - 26 = 42 - 26 = 16, d(26) = 4 and 16 / 4 = 4.
References
- Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
- Paul T. Bateman, Paul Erdős, Carl Pomerance and E.G. Straus, The arithmetic mean of the divisors of an integer, in Marvin I. Knopp (ed.), Analytic Number Theory, Proceedings of a Conference Held at Temple University, Philadelphia, May 12-15, 1980, Lecture Notes in Mathematics, Vol. 899, Springer, Berlin - New York, 1981, pp. 197-220, alternative link.
Programs
-
Magma
[k:k in [1..550]| (DivisorSigma(1,k)-k) mod DivisorSigma(0,k) eq 0]; // Marius A. Burtea, Jan 16 2020
-
Maple
with(numtheory): P:= proc(q) local n; for n from 1 to q do if type((sigma(n)-n)/tau(n),integer) then print(n); fi; od; end: P(10^3);
-
Mathematica
Select[Range@ 520, Mod[DivisorSigma[1, #] - #, DivisorSigma[0, #]] == 0 &] (* Michael De Vlieger, Oct 14 2016 *)
-
PARI
isok(n) = ((sigma(n) - n) % numdiv(n)) == 0; \\ Michel Marcus, Oct 11 2016
Comments