cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277405 a(n) equals the constant term in the sum of all permutations of compositions of functions (1 + k*x) for k=1..n.

Original entry on oeis.org

1, 5, 40, 524, 10776, 327732, 13920096, 788050944, 57348311040, 5215111879680, 579420628853760, 77220215372770560, 12157472554474222080, 2232192933566250681600, 472721150641130889523200, 114371049117960857921126400, 31350167446592485414541721600, 9664519305841281076219121664000, 3328880054333616589332111409152000, 1273663039174670323519439513960448000
Offset: 1

Views

Author

Paul D. Hanna, Oct 16 2016

Keywords

Comments

A277406(n) = (n!)^2 + a(n).
The sum of all permutations of the compositions of functions (1+k*x), for k=1..n, equals: (n!)^2*x + a(n); this sequence gives the constant term.

Examples

			Illustration of initial terms.
a(1) = 1, the constant term of (1+x);
a(2) = 5, the constant term of the sum of permutations of compositions of functions (1+x) and (1+2*x): (1+x)o(1+2*x) + (1+2*x)o(1+x) = (2*x + 2) + (2*x + 3) = 4*x + 5.
a(3) = 40, the constant term of the sum of permutations of compositions of functions (1+x), (1+2*x), and (1+3*x): (1+x)o(1+2*x)o(1+3*x) + (1+x)o(1+3*x)o(1+2*x) + (1+2*x)o(1+1*x)o(1+3*x) + (1+2*x)o(1+3*x)o(1+1*x) + (1+3*x)o(1+1*x)o(1+2*x) + (1+3*x)o(1+2*x)o(1+1*x) = (6*x + 4) + (6*x + 5) + (6*x + 5) + (6*x + 9) + (6*x + 7) + (6*x + 10) = 36*x + 40.
etc.
Alternatively,
a(2) = 5 = Sum_{i=1..2} (1+i),
a(3) = 40 = Sum_{i=1..3, j=1..3, j<>i} (1 + i*(1+j)),
a(4) = 524 = Sum_{i=1..4, j=1..4, k=1..4, k<>j<>i, k<>i} (1 + i*(1 + j*(1+k))), etc.
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n-1, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n-1} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i).