cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277406 a(n) equals the sum of all permutations of compositions of functions (1 + k*x) for k=1..n, evaluated at x=1.

Original entry on oeis.org

1, 2, 9, 76, 1100, 25176, 846132, 39321696, 2413753344, 189030205440, 18383301319680, 2172771551093760, 306662748175330560, 50933260598106862080, 9832247390118248121600, 2182733403365330313523200, 552134185815355910465126400, 157863713952139655599757721600, 50654908373638564216229105664000
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2016

Keywords

Examples

			Illustration of initial terms.
a(0) = 1, by convention;
a(1) = 2, the function (1+x) evaluated at x=1;
a(2) = 9, the sum of permutations of compositions of functions (1+x) and (1+2*x), evaluated at x=1: (1+x)o(1+2*x) + (1+2*x)o(1+x) = (2*x + 2) + (2*x + 3) = 4*x + 5.
a(3) = 76, the sum of permutations of compositions of functions (1+x), (1+2*x), and (1+3*x), evaluated at x=1: (1+x)o(1+2*x)o(1+3*x) + (1+x)o(1+3*x)o(1+2*x) + (1+2*x)o(1+1*x)o(1+3*x) + (1+2*x)o(1+3*x)o(1+1*x) + (1+3*x)o(1+1*x)o(1+2*x) + (1+3*x)o(1+2*x)o(1+1*x) = (6*x + 4) + (6*x + 5) + (6*x + 5) + (6*x + 9) + (6*x + 7) + (6*x + 10) = 36*x + 40.
etc.
Alternatively,
a(1) = 2 = Sum_{i=1..1} (1+i),
a(2) = 9 = Sum_{i=1..2, j=1..2, j<>i} (1 + i*(1+j)),
a(3) = 76 = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*(1 + j*(1+k))),
a(4) = 1100 = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*(1 + j*(1 + k*(1+m)))), etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*(n-k)! * Sum[(-1)^(n-i+1) * StirlingS2[i, n-k+1] * StirlingS1[n+1, i], {i, 0, n-k+1}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 27 2016 *)
  • PARI
    {a(n) = sum(k=0,n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i).
a(n) = (n!)^2 + A277405(n).
a(n) = (n+1) * A277407(n).
a(n) = Sum_{k=0..n} A277408(n,k).

A277407 a(n) = A277406(n)/(n+1).

Original entry on oeis.org

1, 1, 3, 19, 220, 4196, 120876, 4915212, 268194816, 18903020544, 1671209210880, 181064295924480, 23589442167333120, 3638090042721918720, 655483159341216541440, 136420837710333144595200, 32478481518550347674419200, 8770206330674425311097651200, 2666047809138871800854163456000, 906320525390421790143785781657600, 342508343836409428996994343026688000
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2016

Keywords

Comments

A277406(n) equals the sum of all permutations of compositions of functions (1 + k*x) for k=1..n, evaluated at x=1.

Crossrefs

Programs

  • PARI
    {a(n) = 1/(n+1) * sum(k=0, n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i).

A277408 Triangle, read by rows, where the g.f. of row n equals the sum of permutations of compositions of functions (1 + k*y*x) for k=1..n with parameter y independent of variable x, as evaluated at x=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 12, 22, 36, 24, 60, 140, 300, 576, 120, 360, 1020, 2700, 6576, 14400, 720, 2520, 8400, 26460, 77952, 211680, 518400, 5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600, 40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400, 362880, 1814400, 8769600, 40824000, 182226240, 775656000, 3126297600, 11820816000, 41391544320, 131681894400, 3628800, 19958400, 106444800, 548856000, 2726317440, 12989592000, 59044550400, 254303280000, 1028448368640, 3856920883200, 13168189440000, 39916800, 239500800, 1397088000, 7903526400, 43233886080, 227885011200, 1152535824000, 5563643500800, 25464033745920, 109530230261760, 437429486592000, 1593350922240000
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2016

Keywords

Examples

			Illustration of initial row polynomials.
  R_0(y) = 1;
  R_1(y) = 1 + y;
  R_2(y) = 2 + 3*y + 4*y^2;
  R_3(y) = 6 + 12*y + 22*y^2 + 36*y^3;
  R_4(y) = 24 + 60*y + 140*y^2 + 300*y^3 + 576*y^4;
  R_5(y) = 120 + 360*y + 1020*y^2 + 2700*y^3 + 6576*y^4 + 14400*y^5;
  R_6(y) = 720 + 2520*y + 8400*y^2 + 26460*y^3 + 77952*y^4 + 211680*y^5 + 518400*y^6;
  R_7(y) = 5040 + 20160*y + 77280*y^2 + 282240*y^3 + 974736*y^4 + 3151680*y^5 + 9408960*y^6 + 25401600*y^7;
  ...
Generating method.
  R_0(y) = 1, by convention;
  R_1(y) = Sum_{i=1..1} (1 + i*y);
  R_2(y) = Sum_{i=1..2, j=1..2, j<>i} (1 + i*y*(1 + j*y));
  R_3(y) = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*y*(1 + j*y*(1 + k*y)));
  R_4(y) = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*y*(1 + j*y*(1 + k*y*(1 + m*y))));
  etc.
This triangle of coefficients begins:
  1;
  1, 1;
  2, 3, 4;
  6, 12, 22, 36;
  24, 60, 140, 300, 576;
  120, 360, 1020, 2700, 6576, 14400;
  720, 2520, 8400, 26460, 77952, 211680, 518400;
  5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600;
  40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400;  ...
		

Crossrefs

Cf. A277406 (row sums), A277405, A277407, A188881, A003713.

Programs

  • PARI
    {T(n,k) = k!*(n-k)! * sum(i=0,n-k+1, (-1)^(n-i+1) * stirling(i,n-k+1,2) * stirling(n+1,i,1))}
    for(n=0,11,for(k=0,n,print1( T(n,k) ,", "));print(""))
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n! * k! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^(n+1), k))}; /* Michael Somos, May 10 2017 */

Formula

T(n,k) = k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i). [From formula in A188881 by Vladimir Kruchinin]
T(n,k) = k! * A188881(n+1, n-k+1).
A003713(n) = Sum_{k=0..n} T(n,k) / k!, where e.g.f. of A003713 is log(1/(1+log(1-x))).
Row sums yield A277406.
Showing 1-3 of 3 results.