A277406
a(n) equals the sum of all permutations of compositions of functions (1 + k*x) for k=1..n, evaluated at x=1.
Original entry on oeis.org
1, 2, 9, 76, 1100, 25176, 846132, 39321696, 2413753344, 189030205440, 18383301319680, 2172771551093760, 306662748175330560, 50933260598106862080, 9832247390118248121600, 2182733403365330313523200, 552134185815355910465126400, 157863713952139655599757721600, 50654908373638564216229105664000
Offset: 0
Illustration of initial terms.
a(0) = 1, by convention;
a(1) = 2, the function (1+x) evaluated at x=1;
a(2) = 9, the sum of permutations of compositions of functions (1+x) and (1+2*x), evaluated at x=1: (1+x)o(1+2*x) + (1+2*x)o(1+x) = (2*x + 2) + (2*x + 3) = 4*x + 5.
a(3) = 76, the sum of permutations of compositions of functions (1+x), (1+2*x), and (1+3*x), evaluated at x=1: (1+x)o(1+2*x)o(1+3*x) + (1+x)o(1+3*x)o(1+2*x) + (1+2*x)o(1+1*x)o(1+3*x) + (1+2*x)o(1+3*x)o(1+1*x) + (1+3*x)o(1+1*x)o(1+2*x) + (1+3*x)o(1+2*x)o(1+1*x) = (6*x + 4) + (6*x + 5) + (6*x + 5) + (6*x + 9) + (6*x + 7) + (6*x + 10) = 36*x + 40.
etc.
Alternatively,
a(1) = 2 = Sum_{i=1..1} (1+i),
a(2) = 9 = Sum_{i=1..2, j=1..2, j<>i} (1 + i*(1+j)),
a(3) = 76 = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*(1 + j*(1+k))),
a(4) = 1100 = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*(1 + j*(1 + k*(1+m)))), etc.
-
Table[Sum[k!*(n-k)! * Sum[(-1)^(n-i+1) * StirlingS2[i, n-k+1] * StirlingS1[n+1, i], {i, 0, n-k+1}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 27 2016 *)
-
{a(n) = sum(k=0,n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
for(n=0,20,print1(a(n),", "))
Original entry on oeis.org
1, 1, 3, 19, 220, 4196, 120876, 4915212, 268194816, 18903020544, 1671209210880, 181064295924480, 23589442167333120, 3638090042721918720, 655483159341216541440, 136420837710333144595200, 32478481518550347674419200, 8770206330674425311097651200, 2666047809138871800854163456000, 906320525390421790143785781657600, 342508343836409428996994343026688000
Offset: 0
-
{a(n) = 1/(n+1) * sum(k=0, n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
for(n=0, 20, print1(a(n), ", "))
A277408
Triangle, read by rows, where the g.f. of row n equals the sum of permutations of compositions of functions (1 + k*y*x) for k=1..n with parameter y independent of variable x, as evaluated at x=1.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 12, 22, 36, 24, 60, 140, 300, 576, 120, 360, 1020, 2700, 6576, 14400, 720, 2520, 8400, 26460, 77952, 211680, 518400, 5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600, 40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400, 362880, 1814400, 8769600, 40824000, 182226240, 775656000, 3126297600, 11820816000, 41391544320, 131681894400, 3628800, 19958400, 106444800, 548856000, 2726317440, 12989592000, 59044550400, 254303280000, 1028448368640, 3856920883200, 13168189440000, 39916800, 239500800, 1397088000, 7903526400, 43233886080, 227885011200, 1152535824000, 5563643500800, 25464033745920, 109530230261760, 437429486592000, 1593350922240000
Offset: 0
Illustration of initial row polynomials.
R_0(y) = 1;
R_1(y) = 1 + y;
R_2(y) = 2 + 3*y + 4*y^2;
R_3(y) = 6 + 12*y + 22*y^2 + 36*y^3;
R_4(y) = 24 + 60*y + 140*y^2 + 300*y^3 + 576*y^4;
R_5(y) = 120 + 360*y + 1020*y^2 + 2700*y^3 + 6576*y^4 + 14400*y^5;
R_6(y) = 720 + 2520*y + 8400*y^2 + 26460*y^3 + 77952*y^4 + 211680*y^5 + 518400*y^6;
R_7(y) = 5040 + 20160*y + 77280*y^2 + 282240*y^3 + 974736*y^4 + 3151680*y^5 + 9408960*y^6 + 25401600*y^7;
...
Generating method.
R_0(y) = 1, by convention;
R_1(y) = Sum_{i=1..1} (1 + i*y);
R_2(y) = Sum_{i=1..2, j=1..2, j<>i} (1 + i*y*(1 + j*y));
R_3(y) = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*y*(1 + j*y*(1 + k*y)));
R_4(y) = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*y*(1 + j*y*(1 + k*y*(1 + m*y))));
etc.
This triangle of coefficients begins:
1;
1, 1;
2, 3, 4;
6, 12, 22, 36;
24, 60, 140, 300, 576;
120, 360, 1020, 2700, 6576, 14400;
720, 2520, 8400, 26460, 77952, 211680, 518400;
5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600;
40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400; ...
-
{T(n,k) = k!*(n-k)! * sum(i=0,n-k+1, (-1)^(n-i+1) * stirling(i,n-k+1,2) * stirling(n+1,i,1))}
for(n=0,11,for(k=0,n,print1( T(n,k) ,", "));print(""))
-
{T(n, k) = if( k<0 || k>n, 0, n! * k! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^(n+1), k))}; /* Michael Somos, May 10 2017 */
Showing 1-3 of 3 results.
Comments