cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277491 Number of triangles in the standard triangulation of the n-th approximation of the Koch snowflake fractal.

Original entry on oeis.org

1, 12, 120, 1128, 10344, 93864, 847848, 7642920, 68835432, 619715496, 5578225896, 50207178792, 451877192040, 4066945060008, 36602706866664, 329425167106344, 2964829725182568, 26683480411545000, 240151375243512552, 2161362583350043176, 19452264074784109416
Offset: 0

Views

Author

Dintle N Kagiso, Oct 17 2016

Keywords

Comments

The rational function A_n = (a_0)/5 * (8 - 3(4/9)^n) where a_0=1 in the Wikipedia link below equals A_n = 1/9^n*a(n).

Examples

			a(1) = 9+3 = 12, because an equilateral triangle can be cut up into 9 triangles with side length one-third and 3 further triangles are stacked onto the three central side pieces.
		

Crossrefs

Cf. A277492.

Programs

  • Magma
    [(8*9^n-3*4^n)/5 : n in [0..30]]; // Wesley Ivan Hurt, Apr 11 2017
  • Maple
    L:=[1,12]: for k from 3 to 34 do: L:=[op(L),13*L[k-1]-36*L[k-2]]: od: print(L);
  • Mathematica
    Table[1/5*(8*9^n - 3*4^n), {n, 0, 20}] (* or *)
    CoefficientList[Series[(1 - x)/((1 - 4 x) (1 - 9 x)), {x, 0, 20}], x] (* Michael De Vlieger, Nov 10 2016 *)
    LinearRecurrence[{13,-36},{1,12},30] (* Harvey P. Dale, Feb 26 2023 *)
  • PARI
    Vec((1-x)/((1-4*x)*(1-9*x)) + O(x^30)) \\ Colin Barker, Oct 19 2016
    

Formula

G.f.: (1-x) / ((1-4*x)*(1-9*x)).
a(n) = 13*a(n-1) - 36*a(n-2) for n>1, a(0)=1, a(1)=12.
a(n) = (8*9^n-3*4^n)/5.