cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277506 E.g.f.: 1/((1+LambertW(-x))*(1-x)).

Original entry on oeis.org

1, 2, 8, 51, 460, 5425, 79206, 1377985, 27801096, 637630353, 16376303530, 465451009441, 14501512561548, 491394769892377, 17991533604051294, 707766894441628785, 29771014384775612176, 1333347506427522171169, 63346663190991936656466, 3182006256289160385596833
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Cf. A277507.

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 1:
    seq(a(n), n=0..23);  # Alois P. Heinz, May 12 2021
  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x])/(1-x), {x, 0, 20}], x] * Range[0, 20]!
    Flatten[{1, Table[n! + Sum[Binomial[n, k]*k^k*(n-k)!, {k, 1, n}], {n, 1, 20}]}]
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/((1 + lambertw(-x))*(1-x)))) \\ G. C. Greubel, Nov 12 2017

Formula

For n > 0, a(n) = n! + Sum_{k=1..n} binomial(n,k) * k^k * (n-k)!.
a(n) ~ n^n / (1-exp(-1)).
a(n) = n*a(n-1) + n^n, a(0) = 1. - Alois P. Heinz, May 12 2021

A277508 E.g.f.: -1/((1-LambertW(-x))*(1+x)).

Original entry on oeis.org

-1, 2, -4, 15, -44, 385, -294, 32473, 280120, 8528049, 170757910, 4748977321, 132530188308, 4210910824393, 142940443542274, 5273270156096265, 208276214340505456, 8800344095155520353, 395536292522024420142, 18853858817276143333321, 949787282108877829653580
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x])/(1+x), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(-1/((1 - lambertw(-x))*(1+x)))) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) ~ n^(n-1) / (4*(1+exp(-1))).
Showing 1-2 of 2 results.