cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A354436 a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.

Original entry on oeis.org

1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0

Views

Author

Seiichi Manyama, May 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
    
  • Python
    from math import factorial
    def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022

Formula

E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)).
a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022
a(n) = Sum_{k=0..n} (n-k)^k*k!*binomial(n,k). - Ridouane Oudra, Jun 17 2025

A277509 Expansion of e.g.f. 1/((1+LambertW(-x))*(1+x)).

Original entry on oeis.org

1, 0, 4, 15, 196, 2145, 33786, 587041, 12080888, 278692497, 7213075030, 205967845281, 6444486304884, 219096784628761, 8044651840755362, 317224112769528945, 13371158269397088496, 599930571306586259745, 28547657791777984900014, 1436014157616531876023713
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1+LambertW[-x])/(1+x), {x, 0, 20}], x] * Range[0, 20]!
    Flatten[{1, Table[(-1)^n*n! + Sum[(-1)^(n-k) * Binomial[n, k] * k^k * (n-k)!, {k, 1, n}], {n, 1, 20}]}]
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(1/((1 + lambertw(-x))*(1+x)))) \\ G. C. Greubel, Nov 12 2017

Formula

For n > 0, a(n) = (-1)^n*n!+Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^k * (n-k)!.
a(n) ~ n^n / (1+exp(-1)).
a(0) = 1; a(n) = -n*a(n-1) + n^n. - Seiichi Manyama, May 01 2023

A102743 Expansion of e.g.f. LambertW(-x)/(x*(x-1)).

Original entry on oeis.org

1, 2, 7, 37, 273, 2661, 32773, 491555, 8715409, 178438681, 4142334501, 107483043735, 3081956918857, 96759352320437, 3300826000845493, 121569984050610331, 4807542796319581089, 203167758634027130289
Offset: 0

Views

Author

Vladeta Jovovic, Feb 08 2005

Keywords

Crossrefs

Cf. A277506.

Programs

  • Mathematica
    CoefficientList[Series[LambertW[-x]/(x*(x-1)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec(serlaplace(lambertw(-x)/(x*(x-1)))) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) = n!*Sum_{k=1..n+1} k^(k-1)/k!. - Vladeta Jovovic, Oct 17 2007
a(n) ~ exp(2)/(exp(1)-1) * n^(n-1). - Vaclav Kotesovec, Nov 27 2012
E.g.f.: W(0)/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+2)^k/( x*(k+2)^k + (k+1)^k/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
From Seiichi Manyama, May 01 2023: (Start)
E.g.f.: exp(-LambertW(-x))/(1-x).
a(0) = 1; a(n) = n*a(n-1) + (n+1)^(n-1). (End)

A277507 E.g.f.: -1/((1-LambertW(-x))*(1-x)).

Original entry on oeis.org

-1, 0, 0, 3, 28, 305, 3846, 57337, 998600, 20036529, 456403690, 11647754921, 329290975212, 10214585950153, 344897398385918, 12590837785019145, 494101941398352016, 20740772742716097377, 927276395603713539282, 43987299891665164562377, 2206610456287703987567540
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-x])/(1-x), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); Vec(serlaplace(-1/((1 - lambertw(-x))*(1-x)))) \\ G. C. Greubel, Nov 08 2017

Formula

a(n) ~ n^(n-1) / (4*(1-exp(-1))).

A344229 a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.

Original entry on oeis.org

1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0

Views

Author

Alois P. Heinz, May 12 2021

Keywords

Comments

This sequence is one of many possible solutions to puzzle 16 on the Meerdaelquiz puzzle page, cf. the Delestinne link and A090805.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^signum(n mod 4) end: a(0):= 1:
    seq(a(n), n=0..23);

A300519 Convolution of n! and n^n.

Original entry on oeis.org

1, 2, 7, 39, 321, 3603, 51391, 884873, 17770445, 406673247, 10431884283, 296262164637, 9224841015745, 312441152401067, 11434829066996087, 449675059390576257, 18908960744072894325, 846638474386244188311, 40213487658138717885907, 2019543479160709325145893
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k == 0, 1, k^k] * (n-k)!, {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} k^k * (n-k)!.
a(n) ~ n^n * (1 + exp(-1)/n).

A356691 a(n) = n! * Sum_{k=0..n} k^(2*k)/k!.

Original entry on oeis.org

1, 2, 20, 789, 68692, 10109085, 2237436846, 693885130771, 287026057756824, 152677869816810537, 101526778698168105370, 82519543952519610272391, 80487081730821079456710228, 92779662255769290691336848973, 124775610962828705895908497741878
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(2*k)/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+i^(2*i)); v;

Formula

a(0) = 1; a(n) = n*a(n-1) + n^(2*n).

A360596 Expansion of e.g.f. 1/( (1 - x) * (1 + LambertW(-2*x)) ).

Original entry on oeis.org

1, 3, 22, 282, 5224, 126120, 3742704, 131612432, 5347866752, 246490091136, 12704900911360, 724072211436288, 45209213973292032, 3068872654856532992, 225023336997933996032, 17724257054969009940480, 1492513932494133333753856, 133800772458366199028023296
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)*(1+lambertw(-2*x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (2*k)^k/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+(2*i)^i); v;

Formula

a(n) = n! * Sum_{k=0..n} (2*k)^k / k!.
a(0)=1; a(n) = n*a(n-1) + (2*n)^n.
a(n) ~ 2^(n+1) * n^n / (2 - exp(-1)). - Vaclav Kotesovec, Feb 13 2023

A374844 a(n) = n! * Sum_{k=1..n} k^k / k!.

Original entry on oeis.org

0, 1, 6, 45, 436, 5305, 78486, 1372945, 27760776, 637267473, 16372674730, 465411092641, 14501033559948, 491388542871577, 17991446425760094, 707765586767260785, 29770993461985724176, 1333347150740094075169, 63346656788618230928466
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 0:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 22 2024
  • PARI
    a(n) = n!*sum(k=1, n, k^k/k!);

Formula

a(0) = 0; a(n) = n*a(n-1) + n^n.
a(n) = A277506(n) - n!.
E.g.f.: -1/( (1 + 1/LambertW(-x)) * (1 - x) ).
a(n) ~ n^n / (1 - exp(-1)). - Vaclav Kotesovec, Jul 22 2024
Showing 1-9 of 9 results.