A354436
a(n) = n! * Sum_{k=0..n} k^(n-k)/k!.
Original entry on oeis.org
1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443
Offset: 0
-
Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
-
from math import factorial
def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022
A277509
Expansion of e.g.f. 1/((1+LambertW(-x))*(1+x)).
Original entry on oeis.org
1, 0, 4, 15, 196, 2145, 33786, 587041, 12080888, 278692497, 7213075030, 205967845281, 6444486304884, 219096784628761, 8044651840755362, 317224112769528945, 13371158269397088496, 599930571306586259745, 28547657791777984900014, 1436014157616531876023713
Offset: 0
-
CoefficientList[Series[1/(1+LambertW[-x])/(1+x), {x, 0, 20}], x] * Range[0, 20]!
Flatten[{1, Table[(-1)^n*n! + Sum[(-1)^(n-k) * Binomial[n, k] * k^k * (n-k)!, {k, 1, n}], {n, 1, 20}]}]
-
my(x='x+O('x^50)); Vec(serlaplace(1/((1 + lambertw(-x))*(1+x)))) \\ G. C. Greubel, Nov 12 2017
A102743
Expansion of e.g.f. LambertW(-x)/(x*(x-1)).
Original entry on oeis.org
1, 2, 7, 37, 273, 2661, 32773, 491555, 8715409, 178438681, 4142334501, 107483043735, 3081956918857, 96759352320437, 3300826000845493, 121569984050610331, 4807542796319581089, 203167758634027130289
Offset: 0
-
CoefficientList[Series[LambertW[-x]/(x*(x-1)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
-
my(x='x+O('x^50)); Vec(serlaplace(lambertw(-x)/(x*(x-1)))) \\ G. C. Greubel, Nov 08 2017
A277507
E.g.f.: -1/((1-LambertW(-x))*(1-x)).
Original entry on oeis.org
-1, 0, 0, 3, 28, 305, 3846, 57337, 998600, 20036529, 456403690, 11647754921, 329290975212, 10214585950153, 344897398385918, 12590837785019145, 494101941398352016, 20740772742716097377, 927276395603713539282, 43987299891665164562377, 2206610456287703987567540
Offset: 0
-
CoefficientList[Series[-1/(1-LambertW[-x])/(1-x), {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^50); Vec(serlaplace(-1/((1 - lambertw(-x))*(1-x)))) \\ G. C. Greubel, Nov 08 2017
A344229
a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.
Original entry on oeis.org
1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0
A300519
Convolution of n! and n^n.
Original entry on oeis.org
1, 2, 7, 39, 321, 3603, 51391, 884873, 17770445, 406673247, 10431884283, 296262164637, 9224841015745, 312441152401067, 11434829066996087, 449675059390576257, 18908960744072894325, 846638474386244188311, 40213487658138717885907, 2019543479160709325145893
Offset: 0
-
Table[Sum[If[k == 0, 1, k^k] * (n-k)!, {k, 0, n}], {n, 0, 20}]
A356691
a(n) = n! * Sum_{k=0..n} k^(2*k)/k!.
Original entry on oeis.org
1, 2, 20, 789, 68692, 10109085, 2237436846, 693885130771, 287026057756824, 152677869816810537, 101526778698168105370, 82519543952519610272391, 80487081730821079456710228, 92779662255769290691336848973, 124775610962828705895908497741878
Offset: 0
-
a(n) = n!*sum(k=0, n, k^(2*k)/k!);
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+i^(2*i)); v;
A360596
Expansion of e.g.f. 1/( (1 - x) * (1 + LambertW(-2*x)) ).
Original entry on oeis.org
1, 3, 22, 282, 5224, 126120, 3742704, 131612432, 5347866752, 246490091136, 12704900911360, 724072211436288, 45209213973292032, 3068872654856532992, 225023336997933996032, 17724257054969009940480, 1492513932494133333753856, 133800772458366199028023296
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)*(1+lambertw(-2*x)))))
-
a(n) = n!*sum(k=0, n, (2*k)^k/k!);
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+(2*i)^i); v;
A374844
a(n) = n! * Sum_{k=1..n} k^k / k!.
Original entry on oeis.org
0, 1, 6, 45, 436, 5305, 78486, 1372945, 27760776, 637267473, 16372674730, 465411092641, 14501033559948, 491388542871577, 17991446425760094, 707765586767260785, 29770993461985724176, 1333347150740094075169, 63346656788618230928466
Offset: 0
-
a:= proc(n) a(n):= n*a(n-1) + n^n end: a(0):= 0:
seq(a(n), n=0..23); # Alois P. Heinz, Jul 22 2024
-
a(n) = n!*sum(k=1, n, k^k/k!);
Showing 1-9 of 9 results.
Comments