cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277536 T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 3, 6, 0, 0, 8, 24, 24, 0, 0, 10, 170, 180, 120, 0, 0, 54, 900, 1980, 1440, 720, 0, 0, -42, 6566, 19530, 21840, 12600, 5040, 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320, 0, 0, -5112, 365256, 2650536, 4818744, 4536000, 2993760, 1270080, 362880
Offset: 0

Views

Author

Alois P. Heinz, Oct 19 2016

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0,   2;
  0, 0,   3,     6;
  0, 0,   8,    24,     24;
  0, 0,  10,   170,    180,    120;
  0, 0,  54,   900,   1980,   1440,    720;
  0, 0, -42,  6566,  19530,  21840,  12600,   5040;
  0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A063524, A005727 (for n>1).
Main diagonal gives A000142.
Row sums give A033917.
T(n+1,n)/3 gives A005990.
T(2n,n) gives A290023.

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<0, 0,
          `if`(n=0, 1, (x+1)^f(n-1)))
        end:
    T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n):
    seq(seq(T(n, k), k=0..n), n=0..12);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
          -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
          (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
        end:
    T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];
    T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
    (* second program: *)
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
    T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]);
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)

Formula

E.g.f. of column k>0: (x+1)^^k - (x+1)^^(k-1), e.g.f. of column k=0: 1.
T(n,k) = [(d/dx)^n (x^^k - x^^(k-1))]_{x=1} for k>0, T(n,0) = A000007(n).
T(n,k) = A277537(n,k) - A277537(n,k-1) for k>0, T(n,0) = A000007(n).
T(n,k) = n * A295027(n,k) for n,k > 0.