A277536 T(n,k) is the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor (or 0 if k=0) at x=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 0, 2, 0, 0, 3, 6, 0, 0, 8, 24, 24, 0, 0, 10, 170, 180, 120, 0, 0, 54, 900, 1980, 1440, 720, 0, 0, -42, 6566, 19530, 21840, 12600, 5040, 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320, 0, 0, -5112, 365256, 2650536, 4818744, 4536000, 2993760, 1270080, 362880
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 0, 2; 0, 0, 3, 6; 0, 0, 8, 24, 24; 0, 0, 10, 170, 180, 120; 0, 0, 54, 900, 1980, 1440, 720; 0, 0, -42, 6566, 19530, 21840, 12600, 5040; 0, 0, 944, 44072, 224112, 305760, 248640, 120960, 40320; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Eric Weisstein's World of Mathematics, Power Tower
- Wikipedia, Knuth's up-arrow notation
- Wikipedia, Tetration
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, (x+1)^f(n-1))) end: T:= (n, k)-> n!*coeff(series(f(k)-f(k-1), x, n+1), x, n): seq(seq(T(n, k), k=0..n), n=0..12); # second Maple program: b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)* (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1))) end: T:= (n, k)-> b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]]; T[n_, k_] := n!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* second program: *) b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]]; T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k - 1, n]]]); Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 28 2018, from Maple *)
Comments