A277561 a(n) = Sum_{k=0..n} ({binomial(n+2k,2k)*binomial(n,k)} mod 2).
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166 [math.CO], 2016.
- Index entries for sequences computed with run length transform
Programs
-
Mathematica
Table[Sum[Mod[Binomial[n + 2 k, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 86}] (* Michael De Vlieger, Oct 21 2016 *)
-
PARI
a(n) = sum(k=0, n, binomial(n+2*k, 2*k)*binomial(n,k) % 2); \\ Michel Marcus, Oct 21 2016
-
Python
def A277561(n): return sum(int(not (~(n+2*k) & 2*k) | (~n & k)) for k in range(n+1))
Formula
a(n) = 2^A069010(n). a(2n) = a(n), a(4n+1) = 2a(n), a(4n+3) = a(2n+1). - Chai Wah Wu, Nov 04 2016
Comments