cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277561 a(n) = Sum_{k=0..n} ({binomial(n+2k,2k)*binomial(n,k)} mod 2).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 2, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 4, 8, 4, 4, 4, 8, 8, 8, 8, 16, 8
Offset: 0

Views

Author

Chai Wah Wu, Oct 19 2016

Keywords

Comments

Equals the run length transform of A040000: 1,2,2,2,2,2,...

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[Binomial[n + 2 k, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 86}] (* Michael De Vlieger, Oct 21 2016 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k, 2*k)*binomial(n,k) % 2); \\ Michel Marcus, Oct 21 2016
  • Python
    def A277561(n):
        return sum(int(not (~(n+2*k) & 2*k) | (~n & k)) for k in range(n+1))
    

Formula

a(n) = 2^A069010(n). a(2n) = a(n), a(4n+1) = 2a(n), a(4n+3) = a(2n+1). - Chai Wah Wu, Nov 04 2016
a(n) = A034444(A005940(1+n)). - Antti Karttunen, May 29 2017