cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A277599 (1/5)*A277592.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 100, 101, 103, 105, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 2]/2 (* A277597 *)
    p[10,4]/3 (* A277598 *)
    p[10,5]/5 (* A277599 *)
    p[10,6]/2 (* A277600 *)
    p[10,8]/2 (* A277601 *)

A277593 Numbers k such that k/10^m == 6 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

6, 16, 26, 36, 46, 56, 60, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 160, 166, 176, 186, 196, 206, 216, 226, 236, 246, 256, 260, 266, 276, 286, 296, 306, 316, 326, 336, 346, 356, 360, 366, 376, 386, 396, 406, 416, 426, 436, 446, 456, 460, 466, 476, 486
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2016

Keywords

Comments

Positions of 6 in A065881.
Numbers having 6 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

A277589 Numbers k such that k/10^m == 2 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

2, 12, 20, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 120, 122, 132, 142, 152, 162, 172, 182, 192, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 302, 312, 320, 322, 332, 342, 352, 362, 372, 382, 392, 402, 412, 420, 422, 432, 442, 452, 462, 472
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2016

Keywords

Comments

Positions of 2 in A065881.
Numbers having 2 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

A277591 Numbers k such that k/10^m == 4 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

4, 14, 24, 34, 40, 44, 54, 64, 74, 84, 94, 104, 114, 124, 134, 140, 144, 154, 164, 174, 184, 194, 204, 214, 224, 234, 240, 244, 254, 264, 274, 284, 294, 304, 314, 324, 334, 340, 344, 354, 364, 374, 384, 394, 400, 404, 414, 424, 434, 440, 444, 454, 464, 474
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2016

Keywords

Comments

Positions of 4 in A065881.
Numbers having 4 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

  • Mathematica
    z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 1] (* A277588 *)
    p[10, 2] (* A277589 *)
    p[10, 3] (* A277590 *)
    p[10, 4] (* A277591 *)
    p[10, 5] (* A277592 *)
    p[10, 6] (* A277593 *)
    p[10, 7] (* A277594 *)
    p[10, 8] (* A277595 *)
    p[10, 9] (* A277596 *)

A277595 Numbers k such that k/10^m == 8 mod 10, where 10^m is the greatest power of 10 that divides k.

Original entry on oeis.org

8, 18, 28, 38, 48, 58, 68, 78, 80, 88, 98, 108, 118, 128, 138, 148, 158, 168, 178, 180, 188, 198, 208, 218, 228, 238, 248, 258, 268, 278, 280, 288, 298, 308, 318, 328, 338, 348, 358, 368, 378, 380, 388, 398, 408, 418, 428, 438, 448, 458, 468, 478, 480, 488
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2016

Keywords

Comments

Positions of 8 in A065881.
Numbers having 8 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

  • Mathematica
    z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 1] (* A277588 *)
    p[10, 2] (* A277589 *)
    p[10, 3] (* A277590 *)
    p[10, 4] (* A277591 *)
    p[10, 5] (* A277592 *)
    p[10, 6] (* A277593 *)
    p[10, 7] (* A277594 *)
    p[10, 8] (* A277595 *)
    p[10, 9] (* A277596 *)
    fQ[n_]:=Module[{sp=Split[IntegerDigits[n]]},If[MemberQ[sp[[-1]],0],sp = Drop[ sp, -1]];MemberQ[sp[[-1]],8]]; Select[Range[500],fQ] (* Harvey P. Dale, Sep 14 2018 *)
  • PARI
    is(n)=n && n/10^valuation(n,10)%10==6 \\ Charles R Greathouse IV, Jan 31 2017

A277588 Numbers k such that k/10^m == 1 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

1, 10, 11, 21, 31, 41, 51, 61, 71, 81, 91, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 210, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 310, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 410, 411, 421, 431, 441, 451, 461, 471
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2016

Keywords

Comments

Positions of 1 in A065881.
Numbers having 1 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

  • Maple
    M:= 4: # to get all terms with <= M digits
    A:= sort([seq(seq(10^d*(10*x+1),x=0..10^(M-1-d)-1),d=0..M-2)]); # Robert Israel, Nov 07 2016
  • Mathematica
    z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[10, 1] (* A277588 *)
    p[10, 2] (* A277589 *)
    p[10, 3] (* A277590 *)
    p[10, 4] (* A277591 *)
    p[10, 5] (* A277592 *)
    p[10, 6] (* A277593 *)
    p[10, 7] (* A277594 *)
    p[10, 8] (* A277595 *)
    p[10, 9] (* A277596 *)
    f[n_] := Block[{m = n}, While[ Mod[m, 10] == 0, m /= 10]; Mod[m, 10]]; Flatten@ Position[ Array[f, 500], 1] (* Robert G. Wilson v, Nov 06 2016 *)
  • PARI
    is(n)=n && n/10^valuation(n,10)%10==1 \\ Charles R Greathouse IV, Jan 31 2017

A277590 Numbers k such that k/10^m == 3 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

3, 13, 23, 30, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 130, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 230, 233, 243, 253, 263, 273, 283, 293, 300, 303, 313, 323, 330, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 430, 433, 443, 453, 463, 473
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2016

Keywords

Comments

Positions of 3 in A065881.
Numbers having 3 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

A277594 Numbers k such that k/10^m == 7 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

7, 17, 27, 37, 47, 57, 67, 70, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 170, 177, 187, 197, 207, 217, 227, 237, 247, 257, 267, 270, 277, 287, 297, 307, 317, 327, 337, 347, 357, 367, 370, 377, 387, 397, 407, 417, 427, 437, 447, 457, 467, 470, 477, 487
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2016

Keywords

Comments

Positions of 7 in A065881.
Numbers having 7 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

A277596 Numbers k such that k/10^m == 9 mod 10, where 10^m is the greatest power of 10 that divides n.

Original entry on oeis.org

9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 190, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 290, 299, 309, 319, 329, 339, 349, 359, 369, 379, 389, 390, 399, 409, 419, 429, 439, 449, 459, 469, 479, 489, 490
Offset: 1

Views

Author

Clark Kimberling, Nov 07 2016

Keywords

Comments

Positions of 9 in A065881.
Numbers having 9 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

Crossrefs

Programs

Showing 1-9 of 9 results.