cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277611 Expansion of 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).

Original entry on oeis.org

1, 1, 2, 6, 27, 180, 1678, 20388, 305331, 5423511, 111282445, 2587931469, 67239205808, 1929910531883, 60636166356164, 2069775112992573, 76268207153351225, 3017346008698599752, 127561003043924116908, 5738904556162964523209, 273764048456544759900846, 13802374108958236134168506, 733335098861491664742838394, 40953333749038944871704984923, 2398217239830108487402017089693, 146949291558772355319517897103987
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2016

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 180*x^5 + 1678*x^6 + 20388*x^7 + 305331*x^8 + 5423511*x^9 + 111282445*x^10 + 2587931469*x^11 + 67239205808*x^12 +...
such that A(x) = 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 83*x^4/4 + 746*x^5/5 + 8817*x^6/6 + 129340*x^7/7 + 2261195*x^8/8 + 45815431*x^9/9 + 1054594428*x^10/10 + 27167908186*x^11/11 + 774186515309*x^12/12 + 24174818590638*x^13/13 + 820795732075686*x^14/14 + 30104104733233598*x^15/15 +...
which equals the sum
log(A(x)) = (x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1296*x^6 +...) +
(x^2 + 2*x^3 + 7*x^4 + 38*x^5 + 291*x^6 + 2938*x^7 +...)/2 +
(x^3 + 3*x^4 + 12*x^5 + 67*x^6 + 507*x^7 + 5001*x^8 +...)/3 +
(x^4 + 4*x^5 + 18*x^6 + 104*x^7 + 783*x^8 + 7572*x^9 +...)/4 +
(x^5 + 5*x^6 + 25*x^7 + 150*x^8 + 1130*x^9 + 10751*x^10 +...)/5 +
(x^6 + 6*x^7 + 33*x^8 + 206*x^9 + 1560*x^10 + 14652*x^11 +...)/6 +
(x^7 + 7*x^8 + 42*x^9 + 273*x^10 + 2086*x^11 + 19404*x^12 +...)/7 +
... +
(x + 2^0*x^2 + 3^1*x^3 + 4^2*x^4 + 5^3*x^5 +...+ k^(k-2)*x^k +...)^n/n +
...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - Sum[k^(k-2) * x^k, {k, 1, 20}]), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 06 2016 *)
  • PARI
    {a(n) = polcoeff( 1/(1 - sum(k=1, n+1, k^(k-2) * x^k +x*O(x^n)) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ n^(n-2) * (1 + 2*exp(-1)/n). - Vaclav Kotesovec, Nov 06 2016
a(0) = 1; a(n) = Sum_{k=1..n} k^(k-2) * a(n-k). - Ilya Gutkovskiy, Feb 07 2020

A308863 Expansion of e.g.f. (1 + LambertW(-x))/(1 + 2*LambertW(-x)).

Original entry on oeis.org

1, 1, 6, 57, 736, 11985, 235296, 5403937, 142073856, 4206560769, 138483596800, 5017244970441, 198363105460224, 8498001799768273, 392127481640165376, 19388814120804416625, 1022681739669784231936, 57317273018414456262273, 3401527253966521309200384
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[(1 + LambertW[-x])/(1 + 2 LambertW[-x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^k*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^k * a(n-k).
a(n) ~ sqrt(Pi) * 2^(n - 3/2) * n^(n + 1/2) / exp(n/2). - Vaclav Kotesovec, Jun 29 2019

A361828 a(0) = 1; a(n+1) = Sum_{k=0..n} k^k * a(n-k).

Original entry on oeis.org

1, 1, 2, 7, 40, 338, 3841, 54821, 939335, 18744832, 426390069, 10881017916, 307686450208, 9546443638409, 322375619648549, 11769010007246745, 461834905502223078, 19384809864763869231, 866564718107731746860, 41102477939620052536314
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - x - x*Sum[(k*x)^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 26 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-x*(sum(k=0, N, (k*x)^k))))

Formula

G.f.: 1 / (1 - x * Sum_{k>=0} (k*x)^k).
a(n) ~ exp(-1) * n^(n-1). - Vaclav Kotesovec, Mar 26 2023
Showing 1-3 of 3 results.