cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277643 Partial sums of number of overpartitions (A015128).

Original entry on oeis.org

1, 3, 7, 15, 29, 53, 93, 157, 257, 411, 643, 987, 1491, 2219, 3259, 4731, 6793, 9657, 13605, 19005, 26341, 36245, 49533, 67261, 90789, 121855, 162679, 216087, 285655, 375903, 492527, 642671, 835283, 1081539, 1395347, 1793987, 2298873, 2936465, 3739401, 4747849
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 25 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]]
    nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 25 2017 *)

Formula

a(n) = Sum_{k=0..n} A015128(k).
a(n) ~ exp(Pi*sqrt(n))/(4*Pi*sqrt(n)) * (1 + Pi/(4*sqrt(n))).
G.f.: 1/(1-x) * Product_{k>=1} (1 + x^k) / (1 - x^k). - Vaclav Kotesovec, Mar 25 2017
G.f.: 1/((1 - x)*theta_4(x)), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 20 2018