A277678 Number T(n,k) of binary words of length n containing exactly k (possibly overlapping) occurrences of the subword 11011; triangle T(n,k), n>=0, k=0..max(0,floor((n-2)/3)), read by rows.
1, 2, 4, 8, 16, 31, 1, 60, 4, 116, 12, 225, 30, 1, 437, 70, 5, 849, 158, 17, 1649, 351, 47, 1, 3202, 770, 118, 6, 6217, 1669, 283, 23, 12071, 3578, 664, 70, 1, 23438, 7599, 1535, 189, 7, 45510, 16016, 3500, 480, 30, 88368, 33545, 7876, 1182, 100, 1, 171586
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 2; : 4; : 8; : 16; : 31, 1; : 60, 4; : 116, 12; : 225, 30, 1; : 437, 70, 5; : 849, 158, 17; : 1649, 351, 47, 1; : 3202, 770, 118, 6;
Links
- Alois P. Heinz, Rows n = 0..350, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; expand( `if`(n=0, 1, b(n-1, [1, 1, 4, 1, 1][t])+ `if`(t=5, x, 1)* b(n-1, [2, 3, 3, 5, 3][t]))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)): seq(T(n), n=0..20); # second Maple program: gf:= k-> `if`(k=0, -(x^4+x^3+1), x^5*(x^3*(x^2+x-1))^(k-1)) /(x^5+x^4-x^3+2*x-1)^(k+1): T:= (n, k)-> coeff(series(gf(k), x, n+1), x, n): seq(seq(T(n, k), k=0..max(0, floor((n-2)/3))), n=0..20);
-
Mathematica
b[n_, t_] := b[n, t] = Expand[ If[n == 0, 1, b[n-1, {1, 1, 4, 1, 1}[[t]]] + If[t == 5, x, 1]*b[n-1, {2, 3, 3, 5, 3}[[t]]]]]; T[n_] := CoefficientList[b[n, 1], x]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
Formula
G.f. of column k=0: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1); g.f. of column k>0: x^5*(x^3*(x^2+x-1))^(k-1)/(x^5+x^4-x^3+2*x-1)^(k+1).
Sum_{k>=0} k * T(n,k) = A001787(n-4) for n>3.