cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A260443 Prime factorization representation of Stern polynomials: a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).

Original entry on oeis.org

1, 2, 3, 6, 5, 18, 15, 30, 7, 90, 75, 270, 35, 450, 105, 210, 11, 630, 525, 6750, 245, 20250, 2625, 9450, 77, 15750, 3675, 47250, 385, 22050, 1155, 2310, 13, 6930, 5775, 330750, 2695, 3543750, 128625, 1653750, 847, 4961250, 643125, 53156250, 18865, 24806250, 202125, 727650, 143, 1212750, 282975, 57881250, 29645, 173643750, 1414875, 18191250, 1001
Offset: 0

Views

Author

Antti Karttunen, Jul 28 2015

Keywords

Comments

The exponents in the prime factorization of term a(n) give the coefficients of the n-th Stern polynomial. See A125184 and the examples.
None of the terms have prime gaps in their factorization, i.e., all can be found in A073491.
Contains neither perfect squares nor prime powers with exponent > 1. A277701 gives the positions of the terms that are 2*square. - Antti Karttunen, Oct 27 2016
Many of the derived sequences (like A002487) have similar "Fir forest" or "Gaudian cathedrals" style scatter plot. - Antti Karttunen, Mar 21 2017

Examples

			n    a(n)   prime factorization    Stern polynomial
------------------------------------------------------------
0       1   (empty)                B_0(x) = 0
1       2   p_1                    B_1(x) = 1
2       3   p_2                    B_2(x) = x
3       6   p_2 * p_1              B_3(x) = x + 1
4       5   p_3                    B_4(x) = x^2
5      18   p_2^2 * p_1            B_5(x) = 2x + 1
6      15   p_3 * p_2              B_6(x) = x^2 + x
7      30   p_3 * p_2 * p_1        B_7(x) = x^2 + x + 1
8       7   p_4                    B_8(x) = x^3
9      90   p_3 * p_2^2 * p_1      B_9(x) = x^2 + 2x + 1
		

Crossrefs

Same sequence sorted into ascending order: A260442.
Cf. also A048675, A277333 (left inverses).
Cf. A277323, A277324 (bisections), A277200 (even terms sorted), A277197 (first differences), A277198.
Cf. A277316 (values at primes), A277318.
Cf. A023758 (positions of squarefree terms), A101082 (of terms not squarefree), A277702 (positions of records), A277703 (their values).
Cf. A283992, A283993 (number of irreducible, reducible polynomials in range 1 .. n).
Cf. also A206296 (Fibonacci polynomials similarly represented).

Programs

  • Maple
    b:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    a:= proc(n) option remember; `if`(n<2, n+1,
          `if`(irem(n, 2, 'h')=0, b(a(h)), a(h)*a(n-h)))
        end:
    seq(a(n), n=0..56);  # Alois P. Heinz, Jul 04 2024
  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a@ n, {n, 0, 56}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ After Charles R Greathouse IV's code for "ps" in A186891.
    \\ Antti Karttunen, Oct 11 2016
    
  • Python
    from sympy import factorint, prime, primepi
    from functools import reduce
    from operator import mul
    def a003961(n):
        F = factorint(n)
        return 1 if n==1 else reduce(mul, (prime(primepi(i) + 1)**F[i] for i in F))
    def a(n): return n + 1 if n<2 else a003961(a(n//2)) if n%2==0 else a((n - 1)//2)*a((n + 1)//2)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017
  • Scheme
    ;; Uses memoization-macro definec:
    (definec (A260443 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A003961 (A260443 (/ n 2)))) (else (* (A260443 (/ (- n 1) 2)) (A260443 (/ (+ n 1) 2))))))
    ;; A more standalone version added Oct 10 2016, requiring only an implementation of A000040 and the memoization-macro definec:
    (define (A260443 n) (product_primes_to_kth_powers (A260443as_coeff_list n)))
    (define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
A001221(a(n)) = A277314(n). [#nonzero coefficients in each polynomial.]
A001222(a(n)) = A002487(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = n. [at x=2.]
A090880(a(n)) = A178590(n). [at x=3.]
A248663(a(n)) = A264977(n). [at x=2 over the field GF(2).]
A276075(a(n)) = A276081(n). ["at factorials".]
A156552(a(n)) = A277020(n). [Converted to "unary-binary" encoding.]
A051903(a(n)) = A277315(n). [Maximal coefficient.]
A277322(a(n)) = A277013(n). [Number of irreducible polynomial factors.]
A005361(a(n)) = A277325(n). [Product of nonzero coefficients.]
A072411(a(n)) = A277326(n). [And their LCM.]
A007913(a(n)) = A277330(n). [The squarefree part.]
A000005(a(n)) = A277705(n). [Number of divisors.]
A046523(a(n)) = A278243(n). [Filter-sequence.]
A284010(a(n)) = A284011(n). [True for n > 1. Another filter-sequence.]
A003415(a(n)) = A278544(n). [Arithmetic derivative.]
A056239(a(n)) = A278530(n). [Weighted sum of coefficients.]
A097249(a(n)) = A277899(n).
a(A000079(n)) = A000040(n+1).
a(A000225(n)) = A002110(n).
a(A000051(n)) = 3*A002110(n).
For n >= 1, a(A000918(n)) = A070826(n).
A007949(a(n)) is the interleaving of A000035 and A005811, probably A101979.
A061395(a(n)) = A277329(n).
Also, for all n >= 1:
A055396(a(n)) = A001511(n).
A252735(a(n)) = A061395(a(n)) - 1 = A057526(n).
a(A000040(n)) = A277316(n).
a(A186891(1+n)) = A277318(n). [Subsequence for irreducible polynomials].

Extensions

More linking formulas added by Antti Karttunen, Mar 21 2017

A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2015

Keywords

Comments

a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2).
For n >= 1, a(n) gives the index of the row where n occurs in array A277710.

Examples

			In this example, binary numbers are given zero-padded to four bits.
a(2) = 2a(1) = 2 * 1 = 2.
a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3.
a(4) = 2a(2) = 2 * 2 = 4.
a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1.
a(6) = 2a(3) = 2 * 3 = 6.
a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7.
		

Crossrefs

Cf. A023758 (the fixed points).
Cf. also A068156, A168081, A265407.
Cf. A277700 (binary weight of terms).
Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence).
Cf. A277711 (position of the first occurrence of each n in this sequence).
Cf. also arrays A277710, A099884.

Programs

  • Mathematica
    recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *)
  • Python
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017

Formula

a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).
a(n) = A248663(A260443(n)).
a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016
Other identities. For all n >= 0:
a(n) = n - A265397(n).
From Antti Karttunen, Oct 28 2016: (Start)
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.]
A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.]
A010060(a(n)) = A011655(n).
a(n) <= n.
For n >= 2, a((2^n)+1) = (2^n) - 3.
The following two identities are so far unproved:
For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5.
For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3.
(End)

A277710 Square array A(r,c), where each row r lists all numbers k for which A264977(k) = r, read by downwards antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 5, 2, 13, 10, 3, 29, 26, 39, 4, 41, 58, 75, 20, 9, 61, 82, 147, 52, 21, 6, 85, 122, 207, 116, 45, 78, 7, 125, 170, 291, 164, 93, 150, 11, 8, 173, 250, 411, 244, 189, 294, 19, 40, 81, 209, 346, 579, 340, 381, 414, 35, 104, 105, 18, 253, 418, 819, 500, 657, 582, 67, 232, 165, 42, 23, 281, 506, 927, 692, 765, 822, 131, 328, 213, 90, 43, 12
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2016

Keywords

Comments

Alternative description: Each row r lists the positions of A019565(r) in A277330.
Odd terms occur only on rows with odd index, and even terms only on rows with even index. Specifically: all terms k on row r are equal to r modulo 4, thus the first differences of each row are all multiples of 4.
All the terms on any particular row are either all multiples of two (or respectively: three, or six), or none of them are.

Examples

			The top left 12 x 12 corner of the array:
   1,   5,  13,  29,  41,   61,   85,  125,  173,  209,  253,  281
   2,  10,  26,  58,  82,  122,  170,  250,  346,  418,  506,  562
   3,  39,  75, 147, 207,  291,  411,  579,  819,  927, 1155, 1635
   4,  20,  52, 116, 164,  244,  340,  500,  692,  836, 1012, 1124
   9,  21,  45,  93, 189,  381,  657,  765,  873, 1317, 1533, 1749
   6,  78, 150, 294, 414,  582,  822, 1158, 1638, 1854, 2310, 3270
   7,  11,  19,  35,  67,  131,  259,  311,  359,  515,  619,  655
   8,  40, 104, 232, 328,  488,  680, 1000, 1384, 1672, 2024, 2248
  81, 105, 165, 213, 333,  429,  669,  861, 1341, 1725, 2685, 2721
  18,  42,  90, 186, 378,  762, 1314, 1530, 1746, 2634, 3066, 3498
  23,  43,  79,  83, 103,  155,  163,  203,  307,  323,  403,  611
  12, 156, 300, 588, 828, 1164, 1644, 2316, 3276, 3708, 4620, 6540
		

Crossrefs

Transpose: A277709.
Column 1: A277711, sorted into ascending order: A277817.
Row 1: A277701, Row 2: A277712 (= 2*A277701), Row 3: A277713, Row 4: 4*A277701, Row 5: A277715, Row 6: 2*A277713. Row 8: 8*A277701, Row 10: 2*A277715.
Cf. A277824 (the index of the column where n is located in this array).
Cf. A019565, A264977, A277330, A277816 and permutation pair A277695 & A277696.

Formula

A(r,1) = A277711(r); for c > 1, A(r,c) = A277816(A(r,c-1)).
Other identities. For all r>=1, c>=1:
A(2*r,c) = 2*A(r,c).
A(r,c) modulo 4 = r modulo 4.

Extensions

The dispersion-style formula added by Antti Karttunen, Nov 06 2016

A277330 a(0)=1, a(1)=2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).

Original entry on oeis.org

1, 2, 3, 6, 5, 2, 15, 30, 7, 10, 3, 30, 35, 2, 105, 210, 11, 70, 21, 30, 5, 10, 105, 42, 77, 70, 3, 210, 385, 2, 1155, 2310, 13, 770, 231, 30, 55, 70, 105, 6, 7, 2, 21, 42, 385, 10, 165, 66, 143, 110, 231, 210, 5, 70, 1155, 66, 1001, 770, 3, 2310, 5005, 2, 15015, 30030, 17, 10010, 3003, 30, 715, 770, 105, 66, 91, 154, 231, 6, 385, 70, 15, 42, 11, 14, 3, 42, 55, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2016

Keywords

Comments

Each term is a squarefree number, A005117.

Crossrefs

Cf. A023758 (positions where coincides with A260443).
Cf. A277701, A277712, A277713 for the positions of 2's, 3's and 6's in this sequence, which are also the first three rows of array A277710.
Cf. also A255483.

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).
Other identities. For all n >= 0:
a(n) = A007913(A260443(n)).
a(n) = A019565(A264977(n)), A048675(a(n)) = A264977(n).
A055396(a(n)) = A277707(A260443(n)) = A001511(n).

A277713 Positions of 3's in A264977; positions of 6's in A277330.

Original entry on oeis.org

3, 39, 75, 147, 207, 291, 411, 579, 819, 927, 1155, 1635, 1851, 2307, 2487, 2583, 2919, 3267, 3699, 3903, 4611, 4971, 5163, 5835, 6531, 7395, 7803, 9219, 9939, 10323, 10839, 11667, 13059, 14787, 15603, 15999, 17895, 18435, 19875, 20295, 20643, 21675, 23331, 26115, 29571, 31203, 31995, 33327, 34383, 35787, 36867, 39747, 40587, 41283, 43347
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Comments

Positions in A260443 of terms that are six times a perfect square (terms in A033581, although not all of them are present in A260443).
All terms are multiples of three.

Crossrefs

Formula

A277714(n) = a(n)/3.

A277712 Positions of 2's in A264977; positions of 3's in A277330.

Original entry on oeis.org

2, 10, 26, 58, 82, 122, 170, 250, 346, 418, 506, 562, 626, 698, 842, 1018, 1130, 1258, 1402, 1690, 1858, 2042, 2266, 2522, 2810, 3386, 3722, 4090, 4538, 5050, 5330, 5626, 6242, 6626, 6778, 7450, 7810, 8186, 9082, 9682, 10106, 10418, 10514, 10666, 11258, 11986, 12490, 13258, 13562, 14906, 15626, 16378, 17074, 18170, 19186, 19370, 19810
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Comments

Positions in A260443 of terms that are three times a perfect square (terms in A033428, although not all of them are present in A260443).

Crossrefs

Row 2 of A277710.
Cf. also A277713.

Formula

a(n) = 2*A277701(n).

A277696 Permutation of natural numbers: a(1) = 1; a(2n) = A277817(1+a(n)), a(2n+1) = A277816(a(n)).

Original entry on oeis.org

1, 2, 5, 3, 10, 7, 13, 4, 39, 15, 26, 9, 11, 18, 29, 6, 20, 92, 75, 24, 27, 49, 58, 14, 21, 16, 19, 31, 42, 62, 41, 8, 78, 33, 52, 270, 172, 196, 147, 47, 312, 56, 51, 126, 101, 143, 82, 23, 22, 34, 45, 28, 80, 32, 35, 64, 59, 96, 90, 153, 118, 95, 61, 12, 40, 224, 150, 66, 57, 129, 116, 1134, 534, 606, 316, 752, 404, 520, 207, 120, 55, 1400, 600
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2016

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A277817(1+n), and each right hand child as A277816(n), when the parent node contains n:
1
................../ \..................
2 5
3......../ \........10 7......../ \........13
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
4 39 15 26 9 11 18 29
6 20 92 75 24 27 49 58 14 21 16 19 31 42 62 41
etc.

Crossrefs

Inverse: A277695.
Cf. A277701 (the rightmost edge of the tree).

Formula

a(1) = 1; and then after, a(2n) = A277817(1+a(n)), a(2n+1) = A277816(a(n)).

A277816 a(n) = the least k > n for which A264977(k) = A264977(n), or 0 if no such k exists.

Original entry on oeis.org

0, 5, 10, 39, 20, 13, 78, 11, 40, 21, 26, 19, 156, 29, 22, 27, 80, 25, 42, 35, 52, 45, 38, 43, 312, 37, 58, 51, 44, 41, 54, 59, 160, 57, 50, 67, 84, 53, 70, 75, 104, 61, 90, 79, 76, 93, 86, 55, 624, 101, 74, 99, 116, 77, 102, 71, 88, 69, 82, 115, 108, 85, 118, 123, 320, 121, 114, 131, 100, 117, 134, 91, 168, 89, 106, 147, 140, 109, 150, 83, 208, 105
Offset: 0

Views

Author

Antti Karttunen, Nov 06 2016

Keywords

Crossrefs

Cf. A277815 (a left inverse).
Cf. A277701, A277712, A277713, A277715 (iterates of this sequence starting from 1, 2, 3 and 9 respectively).

Programs

  • Scheme
    (define (A277816 n) (if (zero? n) n (let ((v (A264977 n))) (let loop ((k (+ 1 n))) (if (= v (A264977 k)) k (loop (+ 1 k)))))))

Formula

For all n >= 0, A277815(a(n)) = n.

A277826 a(n) = the least k for which A264977(k) = A264977(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 7, 12, 1, 14, 15, 16, 17, 18, 7, 4, 9, 14, 23, 24, 17, 2, 15, 28, 1, 30, 31, 32, 33, 34, 7, 36, 17, 14, 3, 8, 1, 18, 23, 28, 9, 46, 47, 48, 49, 34, 15, 4, 17, 30, 47, 56, 33, 2, 31, 60, 1, 62, 63, 64, 65, 66, 7, 68, 33, 14, 47, 72, 73, 34, 3, 28, 17, 6, 23, 16, 81, 2, 23, 36, 1, 46, 87, 56, 73, 18, 47, 92, 9
Offset: 0

Views

Author

Antti Karttunen, Nov 06 2016

Keywords

Crossrefs

Cf. A277701, A277712, A277713, A277715 (positions of 1, 2, 3 and 9 in this sequence).
Cf. A277824, A277884 and their scatter-plots.

Programs

  • Scheme
    (define (A277826 n) (let ((v (A264977 n))) (let loop ((k 0)) (if (= v (A264977 k)) k (loop (+ 1 k))))))

A277884 a(n) = A277814(A277826(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 5, 6, 7, 8, 2, 6, 9, 1, 10, 11, 12, 13, 14, 6, 4, 8, 10, 15, 16, 13, 2, 11, 17, 1, 18, 19, 20, 21, 22, 6, 23, 13, 10, 3, 7, 1, 14, 15, 17, 8, 24, 25, 26, 27, 22, 11, 4, 13, 18, 25, 28, 21, 2, 19, 29, 1, 30, 31, 32, 33, 34, 6, 35, 21, 10, 25, 36, 37, 22, 3, 17, 13, 5, 15, 12, 38, 2, 15, 23, 1, 24, 39, 28, 37, 14, 25, 40, 8, 41
Offset: 0

Views

Author

Antti Karttunen, Nov 06 2016

Keywords

Crossrefs

Left inverse of A277817.
Cf. A277701, A277712, A277713, A277715 (positions of 1, 2, 3 and 8 in this sequence).
Cf. A277824, A277826 and their scatter-plots.

Programs

Formula

a(n) = A277814(A277826(n)).
Other identities. For all n >= 0:
a(A277817(n)) = n.
Showing 1-10 of 10 results.