A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.
1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1
Examples
The array begins: 1, 1, 1, 2, 3, 6, 12, 27, 65, ... 1, 2, 5, 13, 35, 104, 315, 1021, ... 1, 5, 20, 83, 340, 1401, 5809, ... 2, 13, 83, 504, 2843, 15578, ... 3, 35, 340, 2843, 21420, ... 6, 104, 1401, 15578, ... 12, 315, 5809, ... 27, 1021, ... 65, ... ... As a triangle, rows give the number of edges (first row is 0 edges): 1; 1, 1; 1, 2, 1; 2, 5, 5, 2; 3, 13, 20, 13, 3; 6, 35, 83, 83, 35, 6; 12, 104, 340, 504, 340, 104, 12; 27, 315, 1401, 2843, 2843, 1401, 315, 27; 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65; ...
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.
Links
- Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698 [cs.DM], 2012. See Table 1.
- Timothy R. Walsh, Number of sensed planar maps with n edges and m vertices, pp. 11-20.
- Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
Crossrefs
Formula
A(n,k) = A(k,n).
Extensions
Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025
Comments