cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302033 a(n) = A019565(A003188(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 10, 5, 35, 70, 210, 105, 21, 42, 14, 7, 77, 154, 462, 231, 1155, 2310, 770, 385, 55, 110, 330, 165, 33, 66, 22, 11, 143, 286, 858, 429, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 3003, 6006, 2002, 1001, 91, 182, 546, 273, 1365, 2730, 910, 455, 65, 130, 390, 195, 39, 78, 26, 13, 221, 442, 1326, 663, 3315, 6630, 2210, 1105
Offset: 0

Views

Author

Antti Karttunen & Peter Munn, Apr 16 2018

Keywords

Comments

A squarefree analog of A207901 (and the subsequence consisting of its squarefree terms): Each term is either a divisor or a multiple of the next one, and the terms differ by a single prime factor. Compare also to A284003.
For all n >= 0, max(a(n + 1), a(n)) / min(a(n + 1), a(n)) = A094290(n + 1) = prime(valuation(n + 1, 2) + 1) = A000040(A001511(n + 1)). [See Russ Cox's Dec 04 2010 comment in A007814.] - David A. Corneth & Antti Karttunen, Apr 16 2018

Crossrefs

A permutation of A005117. Subsequence of A207901.
Cf. A302054 (gives the sum of prime divisors).
Cf. also A277811, A283475, A284003.

Programs

  • Mathematica
    Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 72, 0] (* Michael De Vlieger, Apr 27 2018 *)
  • PARI
    A003188(n) = bitxor(n, n>>1);
    A019565(n) = {my(j); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A302033(n) = A019565(A003188(n));
    
  • PARI
    first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 1; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] * pr[v++] ^ ex[v]; ex[v]*=-1); res}

Formula

a(n) = A019565(A003188(n)).
a(n) = A284003(A064706(n)).
a(n+1) = A059897(a(n), A094290(n+1)). - Peter Munn, Apr 01 2019

A284003 a(n) = A007913(A283477(n)) = A019565(A006068(n)).

Original entry on oeis.org

1, 2, 6, 3, 30, 15, 5, 10, 210, 105, 35, 70, 7, 14, 42, 21, 2310, 1155, 385, 770, 77, 154, 462, 231, 11, 22, 66, 33, 330, 165, 55, 110, 30030, 15015, 5005, 10010, 1001, 2002, 6006, 3003, 143, 286, 858, 429, 4290, 2145, 715, 1430, 13, 26, 78, 39, 390, 195, 65, 130, 2730, 1365, 455, 910, 91, 182, 546, 273, 510510, 255255, 85085, 170170, 17017
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

A squarefree analog of A302783. Each term is either a divisor or a multiple of the next one. In contrast to A302033 at each step the previous term can be multiplied (or divided), not just by a single prime, but possibly by a product of several distinct ones, A019565(A000975(k)). E.g., a(3) = 3, a(4) = 2*5*a(3) = 30. - Antti Karttunen, Apr 17 2018

Crossrefs

Programs

Formula

a(n) = A007913(A283477(n)).
Other identities. For all n >= 0:
A048675(a(n)) = A006068(n).
A046523(a(n)) = A284004(n).
It seems that A001222(a(n)) = A209281(n).
a(n) = A019565(A006068(n)) = A302033(A064707(n)). - Antti Karttunen, Apr 16 2018

Extensions

Name amended with a second formula by Antti Karttunen, Apr 16 2018

A277810 Square array A(r,c) = A019565(A277820(r,c)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

2, 6, 3, 10, 15, 30, 210, 21, 14, 5, 22, 1155, 462, 35, 70, 858, 39, 910, 55, 330, 105, 1870, 3315, 72930, 5005, 2002, 33, 42, 9699690, 5187, 2926, 85, 714, 2145, 770, 7, 46, 111546435, 238602, 11305, 248710, 3927, 390, 77, 154, 4002, 87, 93763670, 21505, 152490, 440895, 3094, 91, 546, 231, 7130, 13485, 620310, 1078282205, 2306486, 9867, 114114, 17017, 170170, 1365, 2310
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

Permutation of squarefree numbers (A005117) after their initial term 1.

Examples

			The top left corner of the array:
    2,    6,     10,   210,      22,    858,      1870,    9699690
    3,   15,     21,  1155,      39,   3315,      5187,  111546435
   30,   14,    462,   910,   72930,   2926,    238602,   93763670
    5,   35,     55,  5005,      85,  11305,     21505, 1078282205
   70,  330,   2002,   714,  248710, 152490,   2306486,   60138078
  105,   33,   2145,  3927,  440895,   9867,   1870935,  691587897
   42,  770,    390,  3094,  114114, 520030,    162690,  581334754
    7,   77,     91, 17017,     133,  33649,     50141, 6685349671
  154,  546, 170170,   570,    6118, 254562, 357505330,   51269790
  231, 1365,   7293,  3135, 1312311, 983535,  11599797,  589602585
		

Crossrefs

Transpose: A277809.
The topmost row: A123098, the leftmost column: A277811.

Programs

Formula

A(r,c) = A019565(A277820(r,c)).

A277809 Transpose of square array A277810.

Original entry on oeis.org

2, 3, 6, 30, 15, 10, 5, 14, 21, 210, 70, 35, 462, 1155, 22, 105, 330, 55, 910, 39, 858, 42, 33, 2002, 5005, 72930, 3315, 1870, 7, 770, 2145, 714, 85, 2926, 5187, 9699690, 154, 77, 390, 3927, 248710, 11305, 238602, 111546435, 46, 231, 546, 91, 3094, 440895, 152490, 21505, 93763670, 87, 4002, 2310, 1365, 170170, 17017, 114114, 9867, 2306486, 1078282205, 620310, 13485, 7130
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

See A277810.

Examples

			The top left corner of the array:
     2,    3,     30,     5,      70,     105,     42,     7,       154
     6,   15,     14,    35,     330,      33,    770,    77,       546
    10,   21,    462,    55,    2002,    2145,    390,    91,    170170
   210, 1155,    910,  5005,     714,    3927,   3094, 17017,       570
    22,   39,  72930,    85,  248710,  440895, 114114,   133,      6118
   858, 3315,   2926, 11305,  152490,    9867, 520030, 33649,    254562
  1870, 5187, 238602, 21505, 2306486, 1870935, 162690, 50141, 357505330
		

Crossrefs

Transpose: A277810.
The topmost row: A277811, the leftmost column: A123098.
Permutation of squarefree numbers (A005117) after their initial term 1.

Programs

Formula

A(r,c) = A019565(A277819(r,c)).
Showing 1-4 of 4 results.