Original entry on oeis.org
1, 2, 6, 3, 15, 30, 10, 5, 35, 70, 210, 105, 21, 42, 14, 7, 77, 154, 462, 231, 1155, 2310, 770, 385, 55, 110, 330, 165, 33, 66, 22, 11, 143, 286, 858, 429, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 3003, 6006, 2002, 1001, 91, 182, 546, 273, 1365, 2730, 910, 455, 65, 130, 390, 195, 39, 78, 26, 13, 221, 442, 1326, 663, 3315, 6630, 2210, 1105
Offset: 0
Cf.
A302054 (gives the sum of prime divisors).
-
Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 72, 0] (* Michael De Vlieger, Apr 27 2018 *)
-
A003188(n) = bitxor(n, n>>1);
A019565(n) = {my(j); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
A302033(n) = A019565(A003188(n));
-
first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 1; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] * pr[v++] ^ ex[v]; ex[v]*=-1); res}
Original entry on oeis.org
1, 2, 6, 3, 30, 15, 5, 10, 210, 105, 35, 70, 7, 14, 42, 21, 2310, 1155, 385, 770, 77, 154, 462, 231, 11, 22, 66, 33, 330, 165, 55, 110, 30030, 15015, 5005, 10010, 1001, 2002, 6006, 3003, 143, 286, 858, 429, 4290, 2145, 715, 1430, 13, 26, 78, 39, 390, 195, 65, 130, 2730, 1365, 455, 910, 91, 182, 546, 273, 510510, 255255, 85085, 170170, 17017
Offset: 0
Cf.
A000975,
A001222,
A006068,
A007913,
A019565,
A046523,
A048675,
A064707,
A209281,
A283477,
A284004.
-
Table[Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Times @@ (p^Mod[e, 2])] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 52}] (* Michael De Vlieger, Mar 18 2017 *)
-
A007913(n) = core(n);
A034386(n) = prod(i=1, primepi(n), prime(i));
A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From Charles R Greathouse IV, Jun 28 2015
A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A283477(n) = A108951(A019565(n));
A284003(n) = A007913(A283477(n));
-
A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068
A284003(n) = A019565(A006068(n)); \\ (and use A019565 from above) - Antti Karttunen, Apr 16 2018
-
(define (A284003 n) (A007913 (A283477 n)))
A277810
Square array A(r,c) = A019565(A277820(r,c)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Original entry on oeis.org
2, 6, 3, 10, 15, 30, 210, 21, 14, 5, 22, 1155, 462, 35, 70, 858, 39, 910, 55, 330, 105, 1870, 3315, 72930, 5005, 2002, 33, 42, 9699690, 5187, 2926, 85, 714, 2145, 770, 7, 46, 111546435, 238602, 11305, 248710, 3927, 390, 77, 154, 4002, 87, 93763670, 21505, 152490, 440895, 3094, 91, 546, 231, 7130, 13485, 620310, 1078282205, 2306486, 9867, 114114, 17017, 170170, 1365, 2310
Offset: 1
The top left corner of the array:
2, 6, 10, 210, 22, 858, 1870, 9699690
3, 15, 21, 1155, 39, 3315, 5187, 111546435
30, 14, 462, 910, 72930, 2926, 238602, 93763670
5, 35, 55, 5005, 85, 11305, 21505, 1078282205
70, 330, 2002, 714, 248710, 152490, 2306486, 60138078
105, 33, 2145, 3927, 440895, 9867, 1870935, 691587897
42, 770, 390, 3094, 114114, 520030, 162690, 581334754
7, 77, 91, 17017, 133, 33649, 50141, 6685349671
154, 546, 170170, 570, 6118, 254562, 357505330, 51269790
231, 1365, 7293, 3135, 1312311, 983535, 11599797, 589602585
Original entry on oeis.org
2, 3, 6, 30, 15, 10, 5, 14, 21, 210, 70, 35, 462, 1155, 22, 105, 330, 55, 910, 39, 858, 42, 33, 2002, 5005, 72930, 3315, 1870, 7, 770, 2145, 714, 85, 2926, 5187, 9699690, 154, 77, 390, 3927, 248710, 11305, 238602, 111546435, 46, 231, 546, 91, 3094, 440895, 152490, 21505, 93763670, 87, 4002, 2310, 1365, 170170, 17017, 114114, 9867, 2306486, 1078282205, 620310, 13485, 7130
Offset: 1
The top left corner of the array:
2, 3, 30, 5, 70, 105, 42, 7, 154
6, 15, 14, 35, 330, 33, 770, 77, 546
10, 21, 462, 55, 2002, 2145, 390, 91, 170170
210, 1155, 910, 5005, 714, 3927, 3094, 17017, 570
22, 39, 72930, 85, 248710, 440895, 114114, 133, 6118
858, 3315, 2926, 11305, 152490, 9867, 520030, 33649, 254562
1870, 5187, 238602, 21505, 2306486, 1870935, 162690, 50141, 357505330
Permutation of squarefree numbers (
A005117) after their initial term 1.
Showing 1-4 of 4 results.
Comments