cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A302054 a(n) is the sum of prime divisors of A302033(n).

Original entry on oeis.org

0, 2, 5, 3, 8, 10, 7, 5, 12, 14, 17, 15, 10, 12, 9, 7, 18, 20, 23, 21, 26, 28, 25, 23, 16, 18, 21, 19, 14, 16, 13, 11, 24, 26, 29, 27, 32, 34, 31, 29, 36, 38, 41, 39, 34, 36, 33, 31, 20, 22, 25, 23, 28, 30, 27, 25, 18, 20, 23, 21, 16, 18, 15, 13, 30, 32, 35, 33, 38, 40, 37, 35, 42, 44, 47, 45, 40, 42, 39, 37, 48, 50, 53, 51, 56, 58, 55, 53
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Total@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 88, 0] (* Michael De Vlieger, Apr 27 2018 *)
  • PARI
    first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 0; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] + pr[v++] * ex[v]; ex[v]*=-1); res}; \\ David A. Corneth, Apr 18 2018
    
  • PARI
    A003188(n) = bitxor(n, n>>1);
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A302054(n) = vecsum(factor(A019565(A003188(n)))[, 1]); \\ Antti Karttunen, Apr 24 2018

Formula

a(n) = A001414(A302033(n)) = A008472(A302033(n)).

A059897 Symmetric square array read by antidiagonals: A(n,k) is the product of all factors that occur in one, but not both, of the Fermi-Dirac factorizations of n and k.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 6, 6, 4, 5, 8, 1, 8, 5, 6, 10, 12, 12, 10, 6, 7, 3, 15, 1, 15, 3, 7, 8, 14, 2, 20, 20, 2, 14, 8, 9, 4, 21, 24, 1, 24, 21, 4, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 5, 27, 2, 35, 1, 35, 2, 27, 5, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24, 33
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Old name: Square array read by antidiagonals: T(i,j) = product prime(k)^(Ei(k) XOR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; XOR is the bitwise operation on binary representation of the exponents.
Analogous to multiplication, with XOR replacing +.
From Peter Munn, Apr 01 2019: (Start)
(1) Defines an abelian group whose underlying set is the positive integers. (2) Every element is self-inverse. (3) For all n and k, A(n,k) is a divisor of n*k. (4) The terms of A050376, sometimes called Fermi-Dirac primes, form a minimal set of generators. In ordered form, it is the lexicographically earliest such set.
The unique factorization of positive integers into products of distinct terms of the group's lexicographically earliest minimal set of generators seems to follow from (1) (2) and (3).
From (1) and (2), every row and every column of the table is a self-inverse permutation of the positive integers. Rows/columns numbered by nonmembers of A050376 are compositions of earlier rows/columns.
It is a subgroup of the equivalent group over the nonzero integers, which has -1 as an additional generator.
As generated by A050376, the subgroup of even length words is A000379. The complementary set of odd length words is A000028.
The subgroup generated by A000040 (the primes) is A005117 (the squarefree numbers).
(End)
Considered as a binary operation, the result is (the squarefree part of the product of its operands) times the square of (the operation's result when applied to the square roots of the square parts of its operands). - Peter Munn, Mar 21 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 XOR 3) * 3^(3 XOR 5) = 2^6 * 3^6 = 46656.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  1,  6,  8, 10,  3, 14,  4,  18,   5,  22,  24
   3,  6,  1, 12, 15,  2, 21, 24,  27,  30,  33,   4
   4,  8, 12,  1, 20, 24, 28,  2,  36,  40,  44,   3
   5, 10, 15, 20,  1, 30, 35, 40,  45,   2,  55,  60
   6,  3,  2, 24, 30,  1, 42, 12,  54,  15,  66,   8
   7, 14, 21, 28, 35, 42,  1, 56,  63,  70,  77,  84
   8,  4, 24,  2, 40, 12, 56,  1,  72,  20,  88,   6
   9, 18, 27, 36, 45, 54, 63, 72,   1,  90,  99, 108
  10,  5, 30, 40,  2, 15, 70, 20,  90,   1, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,   1, 132
  12, 24,  4,  3, 60,  8, 84,  6, 108, 120, 132,   1
From _Peter Munn_, Apr 04 2019: (Start)
The subgroup generated by {6,8,10}, the first three integers > 1 not in A050376, has the following table:
    1     6     8    10    12    15    20   120
    6     1    12    15     8    10   120    20
    8    12     1    20     6   120    10    15
   10    15    20     1   120     6     8    12
   12     8     6   120     1    20    15    10
   15    10   120     6    20     1    12     8
   20   120    10     8    15    12     1     6
  120    20    15    12    10     8     6     1
(End)
		

Crossrefs

Cf. A284567 (A000142 or A003418-analog for this operation).
Rows/columns: A073675 (2), A120229 (3), A120230 (4), A307151 (5), A307150 (6), A307266 (8), A307267 (24).
Particularly significant subgroups or cosets: A000028, A000379, A003159, A005117, A030229, A252895. See also the lists in A329050, A352273.
Sequences that relate this sequence to multiplication: A000188, A007913, A059895.

Programs

  • Mathematica
    a[i_, i_] = 1;
    a[i_, j_] := Module[{f1 = FactorInteger[i], f2 = FactorInteger[j], e1, e2}, e1[] = 0; Scan[(e1[#[[1]]] = #[[2]])&, f1]; e2[] = 0; Scan[(e2[#[[1]]] = #[[2]])&, f2]; Times @@ (#^BitXor[e1[#], e2[#]]& /@ Union[f1[[All, 1]], f2[[All, 1]]])];
    Table[a[i - j + 1, j], {i, 1, 15}, {j, 1, i}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
  • PARI
    T(n,k) = {if (n==1, return (k)); if (k==1, return (n)); my(fn=factor(n), fk=factor(k)); vp = setunion(fn[,1]~, fk[,1]~); prod(i=1, #vp, vp[i]^(bitxor(valuation(n, vp[i]), valuation(k, vp[i]))));} \\ Michel Marcus, Apr 03 2019
    
  • PARI
    T(i, j) = {if(gcd(i, j) == 1, return(i * j)); if(i == j, return(1)); my(f = vecsort(concat(factor(i)~, factor(j)~)), t = 1, res = 1); while(t + 1 <= #f, if(f[1, t] == f[1, t+1], res *= f[1, t] ^ bitxor(f[2, t] , f[2, t+1]); t+=2; , res*= f[1, t]^f[2, t]; t++; ) ); if(t == #f, res *= f[1, #f] ^ f[2, #f]); res } \\ David A. Corneth, Apr 03 2019
    
  • PARI
    A059897(n,k) = if(n==k, 1, core(n*k) * A059897(core(n,1)[2],core(k,1)[2])^2) \\ Peter Munn, Mar 21 2022
  • Scheme
    (define (A059897 n) (A059897bi (A002260 n) (A004736 n)))
    (define (A059897bi a b) (let loop ((a a) (b b) (m 1)) (cond ((= 1 a) (* m b)) ((= 1 b) (* m a)) ((equal? (A020639 a) (A020639 b)) (loop (A028234 a) (A028234 b) (* m (expt (A020639 a) (A003987bi (A067029 a) (A067029 b)))))) ((< (A020639 a) (A020639 b)) (loop (/ a (A028233 a)) b (* m (A028233 a)))) (else (loop a (/ b (A028233 b)) (* m (A028233 b)))))))
    ;; Antti Karttunen, Apr 11 2017
    

Formula

For all x, y >= 1, A(x,y) * A059895(x,y)^2 = x*y. - Antti Karttunen, Apr 11 2017
From Peter Munn, Apr 01 2019: (Start)
A(n,1) = A(1,n) = n
A(n, A(m,k)) = A(A(n,m), k)
A(n,n) = 1
A(n,k) = A(k,n)
if i_1 <> i_2 then A(A050376(i_1), A050376(i_2)) = A050376(i_1) * A050376(i_2)
if A(n,k_1) = n * k_1 and A(n,k_2) = n * k_2 then A(n, A(k_1,k_2)) = n * A(k_1,k_2)
(End)
T(k, m) = k*m for coprime k and m. - David A. Corneth, Apr 03 2019
if A(n*m,m) = n, A(n*m,k) = A(n,k) * A(m,k) / k. - Peter Munn, Apr 04 2019
A(n,k) = A007913(n*k) * A(A000188(n), A000188(k))^2. - Peter Munn, Mar 21 2022

Extensions

New name from Peter Munn, Mar 21 2022

A207901 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k, also let R_k equal S_k read in reverse order; then the numbers b_k*R_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 6, 3, 12, 24, 8, 4, 20, 40, 120, 60, 15, 30, 10, 5, 35, 70, 210, 105, 420, 840, 280, 140, 28, 56, 168, 84, 21, 42, 14, 7, 63, 126, 378, 189, 756, 1512, 504, 252, 1260, 2520, 7560, 3780, 945, 1890, 630, 315, 45, 90, 270, 135, 540, 1080, 360, 180, 36, 72, 216
Offset: 0

Views

Author

Paul D. Hanna, Feb 21 2012

Keywords

Comments

A permutation of the positive integers (but please note the starting offset: 0-indexed).
This sequence is a variant of A052330.
Shares with A064736, A302350, etc. the property that a(n) is either a divisor or a multiple of a(n+1). - Peter Munn, Apr 11 2018 on SeqFan-list. Note: A302781 is another such "divisor-or-multiple permutation" satisfying the same property. - Antti Karttunen, Apr 14 2018
The offset is 0 since S_0 = {1} denotes the first 2^0 = 1 terms. - Daniel Forgues, Apr 13 2018
This is "Fermi-Dirac piano played with Gray code", as indicated by Peter Munn's Apr 11 2018 formula. Compare also to A303771 and A302783. - Antti Karttunen, May 16 2018

Examples

			Start with [1]; appending 2*[1] results in [1,2];
appending 3*[2,1] results in [1,2, 6,3];
appending 4*[3,6,2,1] results in [1,2,6,3, 12,24,8,4];
appending 5*[4,8,24,12,3,6,2,1]
results in [1,2,6,3,12,24,8,4, 20,40,120,60,15,30,10,5];
next append 7*[5,10,30,15,60,120,40,20,4,8,24,12,3,6,2,1],
multiplying by 7 since 6 is already found in the previous terms.
Each new factor is in A050376: [2,3,4,5,7,9,11,13,16,17,19,23,25,29,...].
Continue in this way to generate all the terms of this sequence.
		

Crossrefs

Cf. A064736, A281978, A282291, A302350, A302781, A302783, A303751, A303771, A304085, A304531, A304755 for other divisor-or-multiple permutations or conjectured permutations.
Cf. A302033 (a squarefree analog), A304745.

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, Reverse[a]*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    {A050376(n)= local(m, c, k, p); n--; if(n<=0, 2*(n==0), c=0; m=2; while( cA050376(n-1)*Vec(Polrev(A))));A[n]}
    for(n=0,63,print1(a(n),",")) \\ edited for offsets by Michel Marcus, Apr 04 2019
    
  • PARI
    up_to_e = 13;
    v050376 = vector(up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A003188(n) = bitxor(n, n>>1);
    A207901(n) = A052330(A003188(n)); \\ Antti Karttunen, Apr 13 2018

Formula

a(n) = A052330(A003188(n)). - Peter Munn, Apr 11 2018
a(n) = A302781(A302843(n)) = A302783(A064706(n)). - Antti Karttunen, Apr 16 2018
a(n+1) = A059897(a(n), A050376(A001511(n+1))). - Peter Munn, Apr 01 2019

Extensions

Offset changed from 1 to 0 by Antti Karttunen, Apr 13 2018

A303771 Divisor-or-multiple permutation of natural numbers, "Fermi-Dirac piano played with May code": a(n) = A052330(A303767(n)).

Original entry on oeis.org

1, 2, 6, 3, 12, 4, 8, 24, 120, 5, 10, 30, 15, 60, 20, 40, 280, 7, 14, 42, 21, 84, 28, 56, 168, 840, 35, 70, 210, 105, 420, 140, 1260, 9, 18, 54, 27, 108, 36, 72, 216, 1080, 45, 90, 270, 135, 540, 180, 360, 2520, 63, 126, 378, 189, 756, 252, 504, 1512, 7560, 315, 630, 1890, 945, 3780, 41580, 11, 22, 66, 33, 132, 44, 88, 264, 1320, 55, 110, 330, 165, 660, 220
Offset: 0

Views

Author

Antti Karttunen, May 02 2018

Keywords

Comments

Consider A019565. Imagine that it is an automatic piano that "plays sequences" when an appropriate punched "tape" is fed to it (as its input), i.e., when it is composed from the right with an appropriate sequence p, as A019565(p(n)). The 1-bits in the binary expansion of each p(n) are the "holes" in the tape, and they determine which "tunes" are present on beat n. The "tunes" are actually primes that are multiplied together. Of course only "squarefree music" (sequences containing only squarefree numbers, A005117) is possible to generate this way, thus we call A019565 a "squarefree piano".
There is a more sophisticated instrument, called "Fermi-Dirac piano" (A052330), with which it is possible to produce sequences that may contain any numbers.
If the tape is constructed in such a way that between the successive beats (when moving from p(n) to p(n+1)), either a subset of 0-bits are toggled on (changed to 1's), or a subset of 1-bits are toggled off (changed to 0's), but no both kind of changes occur simultaneously, then when fed as an input to either of these pianos, the resulting sequence "s" (the output) is guaranteed to satisfy the condition that s(n+1) is either a multiple or a divisor of s(n). For example, Gray code A003188 and its inverse A006068 are examples of such tapes, and they produce sequences A302033, A207901 and A284003, A302783.
This divisor-or-multiple permutation is obtained by playing "Fermi-Dirac piano" with the same tape which yields A303760 when "squarefree piano" is played with it. Note that A303760 is not a subsequence of this sequence, as its terms occur in different order than the squarefree terms here.
See also Peter Munn's Apr 11 2018 message on SeqFan-mailing list and comments in A304537.

Crossrefs

Cf. A303772 (inverse).
Cf. also A064736, A113552, A207901, A281978, A282291, A302350, A302781, A302783, A303751, A304085, A304531 for similar permutations.

Programs

  • PARI
    default(parisizemax,2^31);
    up_to_e = 16;
    up_to = (1 + 2^up_to_e);
    v050376 = vector(2+up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == 2+up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669
    v303760 = vector(up_to);
    m_inverses = Map();
    prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m_inverses,d),v303760[n] = d;mapput(m_inverses,d,n);break)); if(!v303760[n], apu = prev; while(mapisdefined(m_inverses,try = prev*A053669(apu)), apu *= A053669(apu)); v303760[n] = try; mapput(m_inverses,try,n)); prev = v303760[n]);
    A303760(n) = v303760[n+1];
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A303771(n) = A052330(A048675(A303760(n)));

Formula

a(n) = A052330(A303767(n)) = A052330(A048675(A303760(n))). [See comments].

Extensions

Name amended by Antti Karttunen, May 16 2018

A284003 a(n) = A007913(A283477(n)) = A019565(A006068(n)).

Original entry on oeis.org

1, 2, 6, 3, 30, 15, 5, 10, 210, 105, 35, 70, 7, 14, 42, 21, 2310, 1155, 385, 770, 77, 154, 462, 231, 11, 22, 66, 33, 330, 165, 55, 110, 30030, 15015, 5005, 10010, 1001, 2002, 6006, 3003, 143, 286, 858, 429, 4290, 2145, 715, 1430, 13, 26, 78, 39, 390, 195, 65, 130, 2730, 1365, 455, 910, 91, 182, 546, 273, 510510, 255255, 85085, 170170, 17017
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

A squarefree analog of A302783. Each term is either a divisor or a multiple of the next one. In contrast to A302033 at each step the previous term can be multiplied (or divided), not just by a single prime, but possibly by a product of several distinct ones, A019565(A000975(k)). E.g., a(3) = 3, a(4) = 2*5*a(3) = 30. - Antti Karttunen, Apr 17 2018

Crossrefs

Programs

Formula

a(n) = A007913(A283477(n)).
Other identities. For all n >= 0:
A048675(a(n)) = A006068(n).
A046523(a(n)) = A284004(n).
It seems that A001222(a(n)) = A209281(n).
a(n) = A019565(A006068(n)) = A302033(A064707(n)). - Antti Karttunen, Apr 16 2018

Extensions

Name amended with a second formula by Antti Karttunen, Apr 16 2018

A304537 Suspected divisor-or-multiple permutation of squarefree numbers: a(n) = A019565(A304533(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 5, 65, 13, 26, 182, 7, 14, 42, 21, 105, 35, 455, 91, 910, 10, 30, 210, 70, 2730, 39, 78, 546, 273, 1365, 195, 7995, 41, 82, 246, 123, 615, 205, 2665, 533, 1066, 11726, 11, 22, 66, 33, 165, 55, 715, 143, 286, 2002, 77, 154, 462, 231, 1155, 385, 5005, 1001, 10010, 110, 330, 2310, 770, 30030, 429, 858, 6006, 3003, 15015, 2145, 87945, 451, 902
Offset: 0

Views

Author

Antti Karttunen, May 15 2018

Keywords

Comments

Each a(n) is always either a divisor or a multiple of a(n+1).
Consider A052330. Imagine that it is an automatic piano that "plays sequences" when an appropriate punched "tape" is fed to it (as its input), i.e., when it is composed from the right with an appropriate sequence p, as A019565(p(n)). The 1-bits in the binary expansion of each p(n) are the "holes" in the tape, and they determine which "tunes" are present on beat n. The "tunes" are actually "Fermi-Dirac primes" (A050376) that are multiplied together.
If the tape is constructed in such a way that between the successive beats (when moving from p(n) to p(n+1)), either a subset of 0-bits are toggled on (changed to 1's), or a subset of 1-bits are toggled off (changed to 0's), but no both kind of changes occur simultaneously, then when fed as an input to this piano, the resulting sequence "s" (the output) is guaranteed to satisfy the condition that s(n+1) is either a multiple or a divisor of s(n). Furthermore, if the given sequence p is itself a permutation of natural numbers, then also the produced sequence is. For example, Gray code A003188 and its inverse A006068 are such sequences, and when given as an "input tape" for A052330, they produce permutations A207901 and A302783.
There is a simpler instrument, called "squarefree piano" (A019565), with which it is possible to produce similar divisor-or-multiple sequences, but that contain only squarefree numbers. Given A003188 or A006068 as an input tape for it produces correspondingly sequences A302033 and A284003.
This sequence is obtained by playing "squarefree piano" with the same tape which yields A304531 when "Fermi-Dirac piano" is played with it. However, in this case the sequence A304531 is produced by a greedy algorithm, and thus its tape (A304533) is actually a back-formation, obtained from the "music" (A304531) by applying "tape-recorder" (A052331) to it. Note that this in not a subsequence of A304531, as the terms occur in different order than the squarefree terms of A304531.
See also Peter Munn's Apr 11 2018 message on SeqFan-mailing list.

Crossrefs

Programs

Formula

a(n) = A019565(A304533(n)) = A019565(A052331(A304531(1+n))).

A322017 a(0) = 0; for n > 0, if A003188(n) > A003188(n-1) then a(n) = n-1, else if A003188(n+1) < A003188(n) then a(n) = n+1, otherwise a(n) = 0.

Original entry on oeis.org

0, 0, 1, 0, 3, 4, 7, 0, 7, 8, 9, 12, 0, 12, 15, 0, 15, 16, 17, 0, 19, 20, 23, 24, 0, 24, 25, 28, 0, 28, 31, 0, 31, 32, 33, 0, 35, 36, 39, 0, 39, 40, 41, 44, 0, 44, 47, 48, 0, 48, 49, 0, 51, 52, 55, 56, 0, 56, 57, 60, 0, 60, 63, 0, 63, 64, 65, 0, 67, 68, 71, 0, 71, 72, 73, 76, 0, 76, 79, 0, 79, 80, 81, 0, 83, 84, 87, 88, 0, 88, 89
Offset: 0

Views

Author

Antti Karttunen, Nov 24 2018

Keywords

Comments

For all n, A207901(a(n)) divides A207901(n), and similarly for A302033.

Crossrefs

Programs

  • Mathematica
    g[n_] := BitXor[n, Floor[n/2]]; a[n_] := If[n == 0, 0, If[g[n] > g[n-1],  n-1, If[g[n+1] < g[n], n+1, 0]]]; Array[a, 100, 0] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003188(n) = bitxor(n, n>>1);
    A322017(n) = if(0==n, 0, if(A003188(n)>A003188(n-1), n-1, if(A003188(1+n) < A003188(n), n+1, 0)));

A322018 a(n) = A006068(A129760(A003188(n))).

Original entry on oeis.org

0, 0, 3, 0, 7, 4, 7, 0, 15, 8, 11, 8, 15, 12, 15, 0, 31, 16, 19, 16, 23, 20, 23, 16, 31, 24, 27, 24, 31, 28, 31, 0, 63, 32, 35, 32, 39, 36, 39, 32, 47, 40, 43, 40, 47, 44, 47, 32, 63, 48, 51, 48, 55, 52, 55, 48, 63, 56, 59, 56, 63, 60, 63, 0, 127, 64, 67, 64, 71, 68, 71, 64, 79, 72, 75, 72, 79, 76, 79, 64, 95, 80, 83, 80, 87, 84, 87, 80
Offset: 0

Views

Author

Antti Karttunen, Nov 27 2018

Keywords

Comments

For all n, A207901(a(n)) divides A207901(n), and similarly for A302033.

Crossrefs

Programs

Formula

a(n) = A006068(A129760(A003188(n))).
Showing 1-8 of 8 results.