A277829 First Series of Hankel determinants based on squares of Catalan numbers.
1, 1, 9, 1035, 1686931, 40768984675, 14961837668926225, 84566159505295329041875, 7428544024130633312561150929275, 10204389867956705680354458767618278532475, 220168039594282987862502167563496178988004727093379, 74853381374809235976722939648065921771360016655877341808897465
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..41
Programs
-
Maple
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)-> (t-> (binomial(2*t, t)/(t+1))^2)(i+j-1))): seq(a(n), n=0..15); # Alois P. Heinz, Nov 28 2016
-
Mathematica
Flatten[{1, Table[Det[Table[(CatalanNumber[i + j - 1])^2, {i, n}, {j, n}]], {n, 11}]}]
Formula
Conjecture: lim n->infinity log(a(n))/n^2 = 2*log(2). - Vaclav Kotesovec, Nov 29 2016
Extensions
a(0)=1 prepended by Alois P. Heinz, Nov 27 2016
Comments