A278770
Second series of Hankel determinants based on squares of Catalan numbers.
Original entry on oeis.org
1, 4, 159, 81296, 585396881, 61994262028020, 98925461617709743975, 2414583243140269424293854400, 910504281815476426073145299359052745, 5341354769384557074743892800174971438265757284, 489946515248844365403775650233194419858267427195735348151, 705379807799940807283682167156246485805791300481296966713394135535056
Offset: 0
-
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
(t-> (binomial(2*t, t)/(t+1))^2)(i+j))):
seq(a(n), n=0..12); # Alois P. Heinz, May 01 2018
-
Flatten[{1, Table[Det[Table[(CatalanNumber[i + j])^2, {i, n}, {j, n}]], {n, 11}]}]
A278843
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = Catalan(i+j).
Original entry on oeis.org
1, 2, 53, 19148, 97432285, 7146659536022, 7683122105385590481, 122557371932066196769721048, 29280740446653388021872592300048913, 105552099397122165176384278493772205485181002, 5775235099464970103806328103231969172586171168151193533
Offset: 0
From _Stefano Spezia_, Dec 08 2023: (Start)
a(4) = 97432285:
2, 5, 14, 42;
5, 14, 42, 132;
14, 42, 132, 429;
42, 132, 429, 1430.
(End)
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
-
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j], {i, 1, n}, {j, 1, n}]], {n, 1, 14}]}]
-
C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = matpermanent(matrix(n, n, i, j, C(i+j))); \\ Michel Marcus, Dec 11 2023
A278860
First series of Hankel determinants based on hyperfactorial.
Original entry on oeis.org
1, 1, 92, 7207016256, 22448940392028699561050505216, 462177945344267713413229252637478222244311831261385379020800000
Offset: 0
-
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
(t-> mul(k^k, k=0..t))(i+j-1))):
seq(a(n), n=0..6); # Alois P. Heinz, Nov 29 2016
-
Table[Det[Table[Hyperfactorial[i + j - 1], {i, n}, {j, n}]], {n, 7}]
A278868
Second series of Hankel determinants based on hyperfactorial/4.
Original entry on oeis.org
1, 1, 6183, 5772211367657472, 76148812142946816440318638031477145600000, 3940613226283843476344831941863494501303228636304800836707599745608602091520000000000
Offset: 0
-
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
(t-> mul(k^k, k=0..t)/4)(i+j))):
seq(a(n), n=0..6); # Alois P. Heinz, Nov 29 2016
-
Table[Det[Table[Hyperfactorial[i + j]/4, {i, n}, {j, n}]], {n, 6}]
A278844
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (Catalan(i+j))^2.
Original entry on oeis.org
1, 4, 1409, 61813936, 405546824579185, 444429790193462299152820, 87560380592182813232163111416947497, 3267701159348966740482726536189228228570094452288, 24017165813923278639658993746183865352216465064857235206429739929
Offset: 0
-
Flatten[{1, Table[Permanent[Table[CatalanNumber[i+j]^2, {i, 1, n}, {j, 1, n}]], {n, 1, 12}]}]
A278897
First series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).
Original entry on oeis.org
1, 1, 14, 146275425484, 558429168112511379835233509679413804180016
Offset: 0
-
with(LinearAlgebra), with(combinat):
h20:=(i,j)->bell((i+j-2)^2):
seq(Determinant(Matrix(kk,kk,h20)),kk=0..6);
-
Table[Det[Table[BellB[(i + j - 2)^2], {i, n}, {j, n}]], {n, 6}], n=>1.
A278903
Second series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).
Original entry on oeis.org
1, 1, 20922, 96938760190744854628604, 1039473181175725249030299777705981025900981837012416973957739853576960
Offset: 0
-
with(LinearAlgebra), with(combinat):
h21:=(i, j)->bell((i+j-1)^2):
seq(Determinant(Matrix(kk, kk, h21)), kk=0..6);
-
Table[Det[Table[BellB[(i + j - 1)^2], {i, n}, {j, n}]], {n, 5}], n=>1.
Original entry on oeis.org
1, 3, 99, 43881, 280974025, 26916213134875, 39339805703866118875, 887919033897631593738548625, 311967217568836709207331125906048625, 1715750319988362944273302140220635494624999475
Offset: 0
a(2) = 99 because determinant of the following matrix is 99.
[1 1 4]
[1 4 25]
[4 25 196]
-
a:= n-> LinearAlgebra[Determinant](Matrix(n+1, (i, j)->
(t-> (binomial(2*t, t)/(t+1))^2)(i+j-2))):
seq(a(n), n=0..15); # Alois P. Heinz, May 01 2018
-
Table[Det[
Table[(CatalanNumber[i + j - 2])^2, {i, 1, n + 1}, {j, 1, n + 1}]], {n,
0, 10}]
-
a(n) = matdet(matrix(n+1, n+1, i, j, (binomial(2*(i+j-2),(i+j-2))/(i+j-1))^2)); \\ Altug Alkan, May 01 2018
Showing 1-8 of 8 results.
Comments