cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277635 Number of 7's appearing in the sequence of consecutive natural numbers from 1 to A007908(n), where A007908 = (1, 12, 123, 1234, ...).

Original entry on oeis.org

0, 1, 22, 343, 4664, 58985, 713307, 8367637, 96022049
Offset: 1

Views

Author

Keywords

Comments

First 6 terms are the same as in A083449, also see A272525. [See the OEIS wiki page for more details. - M. F. Hasler, Dec 29 2020]
a(n) gives the number of times the digit 7 occurs in all terms of A000027 in the interval [A000027(1), A007908(n)]. - Felix Fröhlich, Oct 28 2016
The sequence was initially defined only up to n = 9 and then extended using A007908 = concat(1..n); see A277837 for the extension using A014824 (a(n) = 10 a(n-1) + n) leading to a smoother growth, in particular at powers of 10. - M. F. Hasler, Nov 01 2016, edited Dec 29 2020

Examples

			22 is the third term of the sequence because there are 22 occurrences of the digit '7' contained in numbers within the range of 1 to 123.
96022049 is the 9th term of the sequence because there are 96022049 occurrences of the digit '7' contained in numbers within the range of 1 to 123456789.
		

Crossrefs

Cf. A277830 - A277838 and A277849: analog for digits 0 .. 9, but based on A014824 instead of A083449.

Programs

  • Mathematica
    Table[a[n] = Count[Flatten@ Map[IntegerDigits, Range@ FromDigits@ Range@ n], k_ /; k == 8]; Print@ a@ n; an = a[n]; an, {n, 0, 9}] (* Michael De Vlieger, Oct 30 2016 *)
  • PARI
    print1(c=0);N=1;for(n=2,8,print1(","c+=sum(k=N+1,N=eval(Str(N,n)),#select(d->d==7,digits(k))))) \\ For illustration; more efficient code below. - M. F. Hasler, Oct 31 2016
    
  • PARI
    A277635(n, m=7)=if(n>m,A277635(n, m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ Valid only for n <= 9. - M. F. Hasler, Nov 02 2016

A277838 Number of '8' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).

Original entry on oeis.org

0, 0, 1, 22, 343, 4664, 58985, 713306, 8367628, 96021959, 1083676380, 12071331701, 133058996022, 1454046750343, 15775035404664, 170096033058985, 1824417120713306, 19478739108367627, 207133070096021958, 2194787491083676380, 23182442812071331701
Offset: 0

Views

Author

M. F. Hasler, Nov 01 2016

Keywords

Examples

			For n=2 there is only one digit '8' in the sequence 0, 1, 2, ..., 12.
For n=3 there are 11 + 10 = 21 more digits '8' in { 18, 28, ..., 78, 80, ..., 89, 98, 108, 118 }, where 88 accounts for two '8's.
		

Crossrefs

Programs

  • PARI
    print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==8,digits(k)))))
    
  • PARI
    A277838(n,m=8)=if(n>m,A277838(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016

Formula

a(n) = A277849(n) = A083449(n) = A277830(n) - 1 for n < 8, a(8) = A277849(8) + 1 = A277837(8) - 9.
More generally, for m = 0, ..., 9, let a[m] denote A277830, ..., A277838 and A277849, respectively. Then a[0](n) = a[n](n) = a[m](n) + 1 for all m > n >= 0, and a[m-1](n) = a[m](n) + (m+1)*10^(n-m) for all n >= m > 1.

Extensions

More terms from Lars Blomberg, Nov 05 2016
Removed incorrect b-file. - David A. Corneth, Dec 31 2020

A277836 Number of '6' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).

Original entry on oeis.org

0, 0, 1, 22, 343, 4664, 58986, 713315, 8367717, 96022849, 1083685281, 12071420713, 133059886145, 1454055651577, 15775124417009, 170096923182441, 1824426021947881, 19478828120713394, 207133960219479637, 2194796392318253180, 23182531824417099723
Offset: 0

Views

Author

M. F. Hasler, Nov 01 2016

Keywords

Examples

			For n=2 there is only one digit '6' in the sequence 0, 1, 2, ..., 12.
For n=3 there are 11 + 10 = 21 more digits '6' in { 16, 26, ..., 56, 60, ..., 69, 76, 86, ..., 116 }, where 66 accounts for two '6's.
		

Crossrefs

Programs

  • Mathematica
    T[int_Integer, {bndsLow_Integer, bndsUpp_Integer}] := Table[
       Count[
        Flatten[Table[
          IntegerDigits[m],
          {m, 1, Sum[
             10^i - 1,
             {i, n}
             ]/9
           }
          ]],
        int
        ],
       {n, bndsLow, bndsUpp}
       ];
    T[6, {0, 7}](* Robert P. P. McKone, Jan 01 2021 *)
  • PARI
    print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==6,digits(k)))))
    
  • PARI
    A277836(n,m=6)=if(n>m,A277836(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016

Formula

a(n) = A277839(n) = A083449(n) = A277830(n) - 1 for n < 6,
a(n) = A277835(n) - 7*10^(n-6) for n >= 6,
a(n) = A277837(n) + 8*10^(n-7) for n >= 7.

Extensions

More terms from Lars Blomberg, Nov 05 2016
Removed incorrect b-file. - David A. Corneth, Dec 31 2020
Showing 1-3 of 3 results.