A277979 a(n) = 4*n^2 + 18*n.
0, 22, 52, 90, 136, 190, 252, 322, 400, 486, 580, 682, 792, 910, 1036, 1170, 1312, 1462, 1620, 1786, 1960, 2142, 2332, 2530, 2736, 2950, 3172, 3402, 3640, 3886, 4140, 4402, 4672, 4950, 5236, 5530, 5832, 6142, 6460, 6786, 7120, 7462, 7812, 8170, 8536, 8910, 9292, 9682
Offset: 0
Examples
a(3) = 90. Indeed, the double-wheel graph DW[3] has 6 edges with end-point degrees 3,3 and 6 edges with end-point degrees 3,6. Then the first Zagreb index is 6*6 + 6*9 = 90.
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[4*n^2+18*n: n in [0..50]]; // Vincenzo Librandi, Nov 09 2016
-
Maple
seq(4*n^2+18*n,n = 0..50);
-
Mathematica
Table[4 n^2 + 18 n, {n, 0, 50}] (* Vincenzo Librandi, Nov 09 2016 *) LinearRecurrence[{3,-3,1},{0,22,52},50] (* Harvey P. Dale, Mar 01 2022 *)
-
PARI
a(n)=4*n^2+18*n \\ Charles R Greathouse IV, Jun 17 2017
Formula
O.g.f.: 2*x*(11 - 7*x)/(1 - x)^3.
E.g.f.: 2*x*(11 + 2*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A139576(n).
Comments