A277987 a(n) = 100*n - 28.
-28, 72, 172, 272, 372, 472, 572, 672, 772, 872, 972, 1072, 1172, 1272, 1372, 1472, 1572, 1672, 1772, 1872, 1972, 2072, 2172, 2272, 2372, 2472, 2572, 2672, 2772, 2872, 2972, 3072, 3172, 3272, 3372, 3472, 3572, 3672, 3772, 3872, 3972
Offset: 0
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- G. H. Fath-Tabar, A. Azad, and N. Elahinezhad, Some topological indices of tetrameric 1,3-adamantane, Iranian J. Math. Chemistry, 1, No. 1, 2010, 111-118.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A277986.
Programs
-
Magma
[100*n-28: n in [0..40]]; // Vincenzo Librandi, Nov 13 2016
-
Maple
seq(100*n-28, n = 0..40);
-
Mathematica
100*Range[0,40]-28 (* or *) LinearRecurrence[{2,-1},{-28,72},50] (* Harvey P. Dale, Feb 13 2018 *)
-
PARI
a(n) = 100*n - 28 \\ Felix Fröhlich, Nov 12 2016
Formula
G.f.: 4*(32*x - 7)/(1 - x)^2.
a(n) = A017293(10*n-3) for n > 0. - Felix Fröhlich, Nov 12 2016
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Nov 13 2016
Comments