A277990 a(n) = 54*n^2 + 6*n.
0, 60, 228, 504, 888, 1380, 1980, 2688, 3504, 4428, 5460, 6600, 7848, 9204, 10668, 12240, 13920, 15708, 17604, 19608, 21720, 23940, 26268, 28704, 31248, 33900, 36660, 39528, 42504, 45588, 48780, 52080, 55488, 59004, 62628, 66360, 70200, 74148, 78204, 82368, 86640
Offset: 0
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- M. R. Farahani, Some connectivity indices of polycyclic aromatic hydrocarbons (PAHs), Advances in Materials and Corrosion, 1, 2013, 65-69.
- I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[54*n^2+6*n: n in [0..40]]; // Vincenzo Librandi, Nov 13 2016
-
Maple
seq(54*n^2+6*n, n = 1..45);
-
Mathematica
Table[54n^2+6n,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,60,228},50] (* Harvey P. Dale, Jan 28 2020 *)
-
PARI
a(n)=54*n^2+6*n \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: 12*x*(5 + 4*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Nov 13 2016
Comments