cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303815 Generalized 29-gonal (or icosienneagonal) numbers: m*(27*m - 25)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 26, 29, 79, 84, 159, 166, 266, 275, 400, 411, 561, 574, 749, 764, 964, 981, 1206, 1225, 1475, 1496, 1771, 1794, 2094, 2119, 2444, 2471, 2821, 2850, 3225, 3256, 3656, 3689, 4114, 4149, 4599, 4636, 5111, 5150, 5650, 5691, 6216, 6259, 6809, 6854, 7429, 7476, 8076
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k such that 216*k + 625 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317325.

Crossrefs

Cf. A255187, A277990 (see the third comment), A316672, A317325.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), this sequence (k=29), A316729 (k=30).

Programs

  • Mathematica
    Table[(54 n (n + 1) + 23 (2 n + 1) (-1)^n - 23)/16, {n, 0, 50}] (* Bruno Berselli, Jun 07 2018 *)
    CoefficientList[ Series[-x (x^2 + 25x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 26, 29, 79, 84}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
    With[{nn=25},Riffle[Table[1-(29x)/2+(27x^2)/2,{x,nn}],PolygonalNumber[ 29,Range[ nn]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 26 2020 *)
  • PARI
    concat(0, Vec(x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 07 2018: (Start)
G.f.: x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (54*n*(n + 1) + 23*(2*n + 1)*(-1)^n - 23)/16. Therefore:
a(n) = n*(27*n + 50)/8, if n is even, or (n + 1)*(27*n - 23)/8 otherwise.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(27*n^2 - 25) = 0. (End)
Sum_{n>=1} 1/a(n) = 2*(27 + 25*Pi*cot(2*Pi/27))/625. - Amiram Eldar, Mar 01 2022

A277991 a(n) = 81*n^2 - 9*n.

Original entry on oeis.org

0, 72, 306, 702, 1260, 1980, 2862, 3906, 5112, 6480, 8010, 9702, 11556, 13572, 15750, 18090, 20592, 23256, 26082, 29070, 32220, 35532, 39006, 42642, 46440, 50400, 54522, 58806, 63252, 67860, 72630, 77562, 82656, 87912, 93330, 98910
Offset: 0

Views

Author

Emeric Deutsch, Nov 12 2016

Keywords

Comments

For n > 0, a(n) is the second Zagreb index of the polycyclic aromatic hydrocarbon PAH[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of PAH[n] can be viewed in the Farahani reference.
The M-polynomial of the polycyclic aromatic hydrocarbon PAH[n] is M(PAH[n], x, y) = 6*n*x*y^3 + 3*n*(3*n-1)*x^3*y^3.

Crossrefs

Cf. A277990.

Programs

Formula

G.f.: 18*x*(4 + 5x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Nov 13 2016
Showing 1-2 of 2 results.