cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277996 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 102, 299, 892, 2713, 8364, 26108, 82310, 261804, 838961, 2706336, 8780725, 28636157, 93818641, 308641277, 1019140129, 3376604826, 11221805968, 37399728251, 124967677989, 418564867751, 1405030366113, 4726036692421, 15927027834163, 53770343259613
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Comments

Also the number of distinct orderless Mathematica expressions with one atom and n positions.

Examples

			The a(5)=13 Mathematica expressions are:
x[x,x,x]
x[x,x][]   x[x][x]   x[][x,x]  x[x,x[]]  x[x[x]]
x[x][][]   x[][x][]  x[][][x]  x[x[]][]  x[][x[]]  x[x[][]]
x[][][][]
		

Crossrefs

Programs

  • Mathematica
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    a[n_]:=a[n]=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-1}]];
    Array[a,30]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} 1/(1 - x^n)^a(n)). (End)