A278022 Squares s such that s + 2 and s - 2 are semiprime.
36, 121, 144, 289, 1764, 2304, 2601, 2809, 4225, 5184, 5329, 6241, 6889, 7056, 8100, 9409, 13225, 15625, 17689, 19881, 23409, 25281, 27225, 30276, 34969, 35721, 38025, 40401, 41616, 42849, 43681, 45369, 63001, 69696, 72361, 78961, 82369, 84681, 87025, 93636, 106929
Offset: 1
Keywords
Examples
a(1) = 36 appears in the list because 36 = 6^2 (square) and 36 + 2 = 38 = 19*2; 36 - 2 = 34 = 17*2; both are semiprime. a(2) = 121 appears in the list because 121 = 11^2 (square) and 121 + 2 = 123 = 41*3;121 - 2 = 119 = 17*7; both are semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..5200
Programs
-
Mathematica
Select[Table[n^2, {n, 1000}], PrimeOmega[# + 2] == 2 && PrimeOmega[# - 2] == 2 &] Select[Range[350]^2,PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Jun 14 2021 *)
-
PARI
for(n = 1, 1000, s = n^2; if( bigomega(s+2)==2 && bigomega(s-2)==2, print1(s, ", ")))
Comments