cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278081 a(n) is 1/12 of the number of primitive quadruples with sum = 0 and sum of squares = 2*m^2, where m = 2*n - 1.

Original entry on oeis.org

1, 2, 6, 8, 6, 10, 14, 12, 16, 18, 16, 24, 30, 18, 30, 32, 20, 48, 38, 28, 40, 42, 36, 48, 56, 32, 54, 60, 36, 58, 62, 48, 84, 66, 48, 72, 72, 60, 80, 80, 54, 82, 96, 60, 88, 112, 64, 108, 96, 60, 102, 104, 96, 106, 110, 76, 112, 144, 84, 128, 110, 80, 150, 128
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Set b(m) = a(n) for m = 2*n-1, and b(m) = 0 for m even.
Conjecture: b(m) is multiplicative: for k >= 1, b(2^k) = 0; for p an odd prime, b(p*k) = p^(k-1)*b(p); b(p)= p + 1 for p == (5, 7, 13, 23) (mod 24); b(p) = p-1 for p == (1, 11, 17, 19) (mod 24); and b(3) = 3. It would be nice to have a proof of this.
This sequence applies also to the case sum = 4*m and ssq = 6*m^2. Generally, there is a 1-to-1 correspondence between a quadruple (h,i,j,k) with sum = r*m and ssq = s*m^2 and another with r'*m and s'*m^2, resp., if r + r'= 4, s - r = s' - r', namely (h',i',j',k') = (m,m,m,m) - (h,i,j,k). [Edited by Petros Hadjicostas, Apr 21 2020]

Examples

			For the case r = 0 and s = 2, we have a(2) = 2 = b(3) because of (-3,-1,2,2) and (-2,-2,1,3) (12 permutations each). For example, (-3) + (-1) + 2 + 2 = 0 but (-3)^2 + (-1)^2 + 2^2 + 2^2 = 18 = 2*3^2 = 2*(2*2-1)^2 (with n = 2 and m = 3).
For the case r = 4 and s = 6, we again have a(2) = 2 = b(3) because of (3,3,3,3) - (-3,-1,2,2) = (6,4,1,1) and (3,3,3,3) - (-2,-2,1,3) = (5,5,2,0) (12 permutations each). For example, 5 + 5 + 2 + 0 = 12 = 4*3 and 5^2 + 5^2 + 2^2 + 0^2 = 54 = 6*3^2 (with n = 2 and m = 3).
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2s - r^2, h}, If[d <= 0, d==0 && Mod[r, 2]==0 && GCD[g, r/2]==1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2]==0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{m = 2n - 1, s}, s = 2m^2; Sum[q[i + j, s - i^2 - j^2, GCD[i, j]], {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/12];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(m=2*n-1, s=2*m^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(i+j, s-i^2-j^2, gcd(i,j)) ))/12} \\ Andrew Howroyd, Aug 02 2018

Extensions

Terms a(51) and beyond from Andrew Howroyd, Aug 02 2018
Name and example section edited by Petros Hadjicostas, Apr 21 2020