cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278085 1/4 of the number of primitive integral quadruples with sum = 3*n and sum of squares = 3*n^2.

Original entry on oeis.org

1, 1, 3, 0, 6, 3, 6, 0, 9, 6, 12, 0, 12, 6, 18, 0, 18, 9, 18, 0, 18, 12, 24, 0, 30, 12, 27, 0, 30, 18, 30, 0, 36, 18, 36, 0, 36, 18, 36, 0, 42, 18, 42, 0, 54, 24, 48, 0, 42, 30, 54, 0, 54, 27, 72, 0, 54, 30, 60, 0, 60, 30, 54, 0, 72, 36, 66, 0, 72, 36, 72, 0, 72, 36, 90, 0, 72, 36, 78, 0, 81, 42, 84, 0, 108, 42, 90, 0, 90, 54, 72, 0, 90, 48, 108, 0, 96, 42, 108, 0
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Conjecture: a(n) is multiplicative, with a(2) = 1, a(2^k) = 0 for k>=2, and for k >= 1 and p an odd prime, a(p^k) = p^(k-1)*a(p), with a(p) = p+1 for p == 5 (mod 6), a(p) = p-1 for p=1 (mod 6), and a(3) = 3. It would be nice to have a proof of this. [See A354766 for additional conjectures. - N. J. A. Sloane, Jun 19 2022]
This is also 1/4 of the number of primitive integral quadruples with sum = n and sum of squares = n^2. See A354766, A354777, A354778 for the total number of solutions. - N. J. A. Sloane, Jun 27 2022

Examples

			For the case r = s = 3, we have 4*a(3) = 12 because of (1,1,3,4) (12 permutations). Indeed, 1 + 1 + 3 + 4 = 9 = 3*3 and 1^2 + 1^2 + 3^2 + 4^2 = 27 = 3*3^2.
For the case r = s = 1, we have again 4*a(3) = 12 because of (3,3,3,3) - (1,1,3,4) = (2,2,0,-1) (12 permutations). Indeed, 2 + 2 + 0 + (-1) = 3 = 1*3 and 2^2 + 2^2 + 0^2 + (-1)^2 = 9 = 1*3^2.
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2 s - r^2, h}, If[d <= 0, d == 0 && Mod[r, 2] == 0 && GCD[g, r/2] == 1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2] == 0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{s}, s = 3 n^2; Sum[q[3 n - i - j, s - i^2 - j^2, GCD[i, j]] , {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/4];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(s=3*n^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(3*n-i-j, s-i^2-j^2, gcd(i,j)) ))/4} \\ Andrew Howroyd, Aug 02 2018

Extensions

Example edited by Petros Hadjicostas, Apr 21 2020