cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278086 1/12 of the number of integer quadruples with sum = 3*n and sum of squares = 7*n^2.

Original entry on oeis.org

1, 1, 4, 0, 4, 4, 6, 0, 12, 4, 10, 0, 14, 6, 16, 0, 16, 12, 19, 0, 24, 10, 22, 0, 20, 14, 36, 0, 30, 16, 32, 0, 40, 16, 24, 0, 38, 19, 56, 0, 42, 24, 42, 0, 48, 22, 46, 0, 42, 20, 64, 0, 54, 36, 40, 0, 76, 30, 60, 0, 60, 32, 72, 0, 56, 40, 68, 0, 88, 24, 72, 0, 72, 38, 80, 0, 60, 56, 80, 0, 108, 42, 82, 0, 64, 42, 120, 0, 90, 48, 84, 0, 128, 46, 76, 0, 98, 42, 120, 0
Offset: 1

Views

Author

Colin Mallows, Nov 14 2016

Keywords

Comments

Conjecture: a(n) is multiplicative with a(2) = 1, a(2^k) = 0 for k >= 2, and for k >= 1 and p an odd prime, a(p^k) = p^(k-1)*a(p) with a(p) = p + 1 for p == (2, 3, 8, 10, 12, 13, 14, 15, 18) (mod 19), a(p) = p - 1 for p == (1, 4, 5, 6, 7, 9, 11, 16, 17) (mod 19), and p(19) = 19. It would be nice to have a proof of this.
This sequence applies also to the case sum = n and ssq = 5*n^2.

Examples

			For the case r = 3 and s = 7, we have 12*a(3) = 48 because of (-3,2,5,5) and (-1,-1,5,6) (12 permutations each) and (-2,1,3,7) (24 permutations). For example, (-3) + 2 + 5 + 5 = 9 = 3*3 and (-3)^2 + 2^2 + 5^2 + 5^2 = 63 = 7*3^2.
For the case r = 1 and s = 5, we again have 12*a(3) = 48 because of (3,3,3,3) - (-3,2,5,5) = (6,1,-2,-2) and (3,3,3,3) - (-1,-1,5,6) = (4,4,-2,-3) (12 permutations each) and (3,3,3,3) - (-2,1,3,7) = (5,2,0,-4) (24 permutations). For example, 5 + 2 + 0 + (-4) = 3 = 1*3 and 5^2 + 2^2 + 0^2 + (-4)^2 = 45 = 5*3^2.
		

Crossrefs

Programs

  • Mathematica
    sqrtint = Floor[Sqrt[#]]&;
    q[r_, s_, g_] := Module[{d = 2 s - r^2, h}, If[d <= 0, d == 0 && Mod[r, 2] == 0 && GCD[g, r/2] == 1, h = Sqrt[d]; If[IntegerQ[h] && Mod[r+h, 2] == 0 && GCD[g, GCD[(r+h)/2, (r-h)/2]]==1, 2, 0]]] /. {True -> 1, False -> 0};
    a[n_] := Module[{s}, s = 7 n^2; Sum[q[3 n - i - j, s - i^2 - j^2, GCD[i, j]], {i, -sqrtint[s], sqrtint[s]}, {j, -sqrtint[s - i^2], sqrtint[s - i^2]}]/12];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 100}] (* Jean-François Alcover, Sep 20 2020, after Andrew Howroyd *)
  • PARI
    q(r, s, g)={my(d=2*s - r^2); if(d<=0, d==0 && r%2==0 && gcd(g, r/2)==1, my(h); if(issquare(d, &h) && (r+h)%2==0 && gcd(g, gcd((r+h)/2, (r-h)/2))==1, 2, 0))}
    a(n)={my(s=7*n^2); sum(i=-sqrtint(s), sqrtint(s), sum(j=-sqrtint(s-i^2), sqrtint(s-i^2), q(3*n-i-j, s-i^2-j^2, gcd(i,j)) ))/12} \\ Andrew Howroyd, Aug 02 2018

Extensions

Example section edited by Petros Hadjicostas, Apr 21 2020