cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A278102 a(n) is the largest j such that A278101(n,k) strictly decreases for k=1..j.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 4, 2, 3, 2, 3, 4, 2, 5, 6, 5, 2, 2, 3, 2, 4, 4, 4, 2, 2, 3, 2, 3, 4, 4, 5, 2, 2, 2, 3, 5, 3, 5, 2, 2, 2, 3, 5, 2, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 2, 3, 2, 2, 4, 5, 4, 3, 3, 2, 2, 3, 5, 4, 5, 2, 2, 2, 3, 2, 3, 4, 2, 2, 2, 3, 2, 3, 4, 6, 5, 2, 3, 2, 2, 4, 6, 6, 2, 3, 2
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Crossrefs

This is the row length sequence for triangles A278103 and A278104.
A278106 lists first occurrences in this sequence.

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278102:=funcA278101_row(n) >;
    [A278102(n):n in[1..103]];
  • Mathematica
    Map[Length@ TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

A278103 Irregular triangle T(n,k) := A278101(n,k) for k = 1..A278102(n), read by rows.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 8, 25, 18, 12, 36, 32, 27, 20, 49, 32, 64, 50, 48, 45, 81, 72, 100, 98, 75, 121, 98, 144, 128, 108, 169, 162, 147, 125, 196, 162, 225, 200, 192, 180, 256, 242, 289, 288, 243, 324, 288, 361, 338, 300, 400, 392, 363, 320, 441, 392, 484, 450, 432
Offset: 1

Views

Author

Jason Kimberley, Nov 15 2016

Keywords

Comments

Each row is the longest strictly decreasing prefix of the corresponding row of A278101.

Examples

			The first 23 rows are:
1;
4, 2;
9, 8, 3;
16, 8;
25, 18, 12;
36, 32, 27, 20;
49, 32;
64, 50, 48, 45;
81, 72;
100, 98, 75;
121, 98;
144, 128, 108;
169, 162, 147, 125;
196, 162;
225, 200, 192, 180;
256, 242;
289, 288, 243;
324, 288;
361, 338, 300;
400, 392, 363, 320;
441, 392;
484, 450, 432, 405, 384;
529, 512, 507, 500, 486, 448;
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Programs

  • Magma
    A277647:=func;
    A278101_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    A278103_row:=funcA278101_row(n) >;
    &cat[A278103_row(n):n in[1..23]];
  • Mathematica
    Map[TakeWhile[FoldList[Function[s, Boole[s < 0] #2][#2 - #1] &, #], # > 0 &] &, #] &@ Map[DeleteCases[#, 0] &, Table[Boole[SquareFreeQ@ k] k Floor[n/Sqrt@ k]^2, {n, 23}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A278104(n,k) * A005117(k) where this triangle and A278104 both have row length sequence A278102.

A278115 Triangle T(n,k) = A278113(n,k)^2 A000040(k) for 1 <= k <= A278114(n), read by rows.

Original entry on oeis.org

2, 8, 3, 5, 7, 18, 12, 5, 7, 11, 13, 17, 32, 27, 20, 28, 11, 13, 17, 19, 23, 29, 31, 50, 48, 45, 28, 44, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 72, 48, 45, 63, 44, 52, 68, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 98, 75, 80, 63, 44, 52, 68, 76, 92, 29, 31, 37, 41, 43, 47, 53
Offset: 1

Views

Author

Jason Kimberley, Feb 10 2017

Keywords

Examples

			The first six rows are:
2;
8, 3, 5, 7;
18, 12, 5, 7, 11, 13, 17;
32, 27, 20, 28, 11, 13, 17, 19, 23, 29, 31;
50, 48, 45, 28, 44, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47;
72, 48, 45, 63, 44, 52, 68, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71;
		

Crossrefs

Cf. A278101.

Programs

  • Magma
    A278112:=func;
    A278115_row:=funcA278112(n,p)^2*p:p in PrimesUpTo(2*n^2)]>;
    &cat[A278115_row(n):n in[1..7]];
  • Mathematica
    Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 7}, {k, PrimePi[2 n^2]}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)

Formula

T(n,k) = prime(k) * floor(n*sqrt(2/prime(k)))^2.

A278100 Number of squarefree positive integers less than n^2.

Original entry on oeis.org

0, 3, 6, 11, 16, 23, 31, 39, 50, 61, 75, 89, 103, 120, 139, 157, 177, 199, 219, 243, 269, 297, 323, 351, 381, 412, 444, 477, 513, 547, 584, 624, 660, 703, 745, 789, 835, 882, 928, 977, 1025, 1073, 1124, 1174, 1230, 1285, 1342, 1400, 1460, 1523, 1582, 1645, 1708
Offset: 1

Views

Author

Jason Kimberley, Nov 12 2016

Keywords

Crossrefs

This is the row length sequence of A277648 and A278101.

Programs

  • Magma
    A278100:=func;
    [A278100(n):n in[1..53]]; // in cubic time
    
  • Mathematica
    Table[Count[Range[n^2], k_ /; SquareFreeQ@ k], {n, 53}] (* Michael De Vlieger, Nov 24 2016 *)
    Module[{nn=60,sf},sf=Accumulate[Table[If[SquareFreeQ[n],1,0],{n,0,nn^2}]];Table[sf[[k^2]],{k,nn}]] (* Harvey P. Dale, Nov 14 2020 *)
  • PARI
    a(n) = #select(x->issquarefree(x), vector(n^2-1, k, k)); \\ Michel Marcus, Nov 12 2016

Formula

a(n) = A013928(n^2).
a(n) ~ 6*n^2/Pi^2 + O(n). - Amiram Eldar, Mar 09 2021
Showing 1-4 of 4 results.