cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A278141 Numerators of partial sums of a Ramanujan series converging to 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) given in A278146.

Original entry on oeis.org

1, 265, 1096065, 281858265, 18519577975665, 4748934018906441, 19474365987782658225, 4989739877102195271225, 5235591401647346852339166225, 1341015791319444602368386319225, 5495144390631448939048252704196225, 1407253983507773608409169421000239225, 92253220393640211712365553562313715740225
Offset: 0

Views

Author

Wolfdieter Lang, Nov 14 2016

Keywords

Comments

The denominators are given in A278142.
One of Ramanujan's series is 1 + 9*(1/4)^4 + 17*(1*5/(4*8))^4 + 25*(1*5*9/(4*8*12))^4 + ... = Sum_{k>=0} (1+8*k)*(risefac(1/4,k)/k!)^4 where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.3) and p. 105, eq. (7.4.3) for s=1/4. The value of this series is 2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) given in A278146.
The general formula, Hardy, p. 105, eq. (7.4.3) (divided by s) is Sum_{k>=0} (1 + 2*k/s)*(risefac(s,k)/k!)^4 = sin^2(s*Pi)*Gamma(s)^2/(2*s*Pi^2*cos(s*Pi)* Gamma(2*s)).

Examples

			The rationals begin: 1, 265/256, 1096065/1048576, 281858265/268435456, 18519577975665/17592186044416, 4748934018906441/4503599627370496, 19474365987782658225/18446744073709551616, ...
The value of the series is (see A278143)
  2^(3/2)/(sqrt(Pi)*Gamma(3/4)^2) = 1.06267989991... .
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[ Sum[  (1 + 8*k)*(Binomial[-1/4, k])^4 , {k, 0, n}] , {n, 0, 25}]] (* G. C. Greubel, Jan 09 2017 *)
  • PARI
    for(n=0,10, print1( numerator( sum(k=0,n, (1+8*k)*(binomial(-1/4,k))^4)), ", ")) \\ G. C. Greubel, Jan 09 2017

Formula

a(n) = numerator(r(n)), with the rationals r(n) = Sum_{k=0..n} (1+8*k)*(risefac(1/4,k)/k!)^4. The rising factorial has been defined in a comment above.
a(n) = Sum_{k=0..n} (1+8*k)*(binomial(-1/4,k))^4.

A278146 Decimal expansion of 2^(3/2) / (sqrt(Pi)*Gamma(3/4)^2).

Original entry on oeis.org

1, 0, 6, 2, 6, 7, 9, 8, 9, 9, 9, 1, 6, 8, 4, 3, 6, 5, 1, 1, 8, 2, 4, 9, 0, 1, 9, 5, 1, 0, 4, 5, 1, 2, 0, 9, 1, 0, 6, 2, 5, 4, 9, 9, 1, 8, 3, 2, 6, 0, 2, 0, 6, 9, 4, 2, 4, 1, 0, 5, 4, 8, 7, 4, 0, 7, 3, 3, 9, 6, 1, 1, 1, 2, 7, 1, 8, 2, 2, 8, 3, 6, 7, 4, 0, 2, 9, 9, 0, 9, 3, 7, 2, 0, 4, 0, 6, 3, 7, 4, 5, 8, 6, 7
Offset: 1

Views

Author

Wolfdieter Lang, Nov 15 2016

Keywords

Comments

This is the value of a series of Ramanujan, namely 1 + 9*(1/4)^4 + 17*(1*5/(4*8))^4 + 25*(1*5*9/(4*8*12))^4 + ... = Sum_{k>=0} (1+8*k)*(risefac(1/4,k)/k!)^4 where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.3) and p. 105, eq. (7.4.3) for s=1/4 (after division by s).
For the partial sums of this series see A278141/A278142.

Examples

			1.06267989991684365118249019510...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.

Crossrefs

Programs

  • Mathematica
    First@ RealDigits@ N[2^(3/2)/(Sqrt[Pi] Gamma[3/4]^2), 104] (* Michael De Vlieger, Nov 15 2016 *)
    RealDigits[2^(3/2)/(Sqrt[Pi]*(Gamma[3/4])^2), 10, 50][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    2^(3/2)/(sqrt(Pi)*(gamma(3/4))^2) \\ G. C. Greubel, Jan 10 2017

Formula

2^(3/2) / (sqrt(Pi)*Gamma(3/4)^2).
Equals 2*A242439. - Hugo Pfoertner, Apr 26 2025

A381268 a(n) = denominator( [(x*y*z*u)^n] 1/sqrt(1 - (x + y + z + u*(y + z))) ).

Original entry on oeis.org

1, 4, 256, 1024, 1048576, 4194304, 268435456, 1073741824, 17592186044416, 70368744177664, 4503599627370496, 18014398509481984, 18446744073709551616, 73786976294838206464, 4722366482869645213696, 18889465931478580854784, 4951760157141521099596496896, 19807040628566084398385987584
Offset: 0

Views

Author

Stefano Spezia, Feb 18 2025

Keywords

Crossrefs

Cf. A381267 (numerator).

Programs

  • Mathematica
    a[n_]:=Denominator[SeriesCoefficient[1/Sqrt[1-(x+y+z+u(y+z))],{x,0,n},{y,0,n},{z,0,n},{u,0,n}]]; Array[a,13,0]

Formula

a(n) = denominator( [x^n] hypergeom( [1/2, 1/6, 1/2, 5/6], [1, 1, 1], 108*x) ).
a(n) = denominator( 2^(2*n-1) * 27^n * Gamma(n+1/6) * Gamma(n+1/2)^2 * Gamma(n+5/6)/(Pi^2 * (n!)^4) ).
a(2*n) = A278142(n).
Showing 1-3 of 3 results.