cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278179 a(n) is the denominator of intersection number , n>=2.

Original entry on oeis.org

240, 144, 48, 8, 96, 1, 32, 1, 32, 1, 8, 1, 16, 1, 64, 1, 32, 1, 32, 1, 64, 1, 16, 1, 16, 1, 8, 1, 16, 1, 128, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 4, 1, 8, 1, 32, 1, 16, 1, 16, 1, 32, 1, 16, 1, 16, 1, 8, 1, 16, 1, 256, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 16, 1, 32, 1, 128, 1, 64, 1, 64, 1, 128
Offset: 2

Views

Author

Gheorghe Coserea, Nov 13 2016

Keywords

Comments

For 'intersection numbers' see Section 1 in Itzykson and Zuber paper.

Examples

			7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
		

Crossrefs

Cf. A269418, A269419, A278178 (numerator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N+2));
      vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
    };
    apply(denominator, seq(85))

Formula

a(n) = denominator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2.